34 research outputs found
Recommended from our members
Collaborative International Research in Clinical and Longitudinal Experience Study in NMOSD.
Objective: To develop a resource of systematically collected, longitudinal clinical data and biospecimens for assisting in the investigation into neuromyelitis optica spectrum disorder (NMOSD) epidemiology, pathogenesis, and treatment.
Methods: To illustrate its research-enabling purpose, epidemiologic patterns and disease phenotypes were assessed among enrolled subjects, including age at disease onset, annualized relapse rate (ARR), and time between the first and second attacks.
Results: As of December 2017, the Collaborative International Research in Clinical and Longitudinal Experience Study (CIRCLES) had enrolled more than 1,000 participants, of whom 77.5% of the NMOSD cases and 71.7% of the controls continue in active follow-up. Consanguineous relatives of patients with NMOSD represented 43.6% of the control cohort. Of the 599 active cases with complete data, 84% were female, and 76% were anti-AQP4 seropositive. The majority were white/Caucasian (52.6%), whereas blacks/African Americans accounted for 23.5%, Hispanics/Latinos 12.4%, and Asians accounted for 9.0%. The median age at disease onset was 38.4 years, with a median ARR of 0.5. Seropositive cases were older at disease onset, more likely to be black/African American or Hispanic/Latino, and more likely to be female.
Conclusions: Collectively, the CIRCLES experience to date demonstrates this study to be a useful and readily accessible resource to facilitate accelerating solutions for patients with NMOSD
The Consensus Molecular Subtypes of Colorectal Cancer
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use -- https://www.nature.com/authors/policies/license.html#termsColorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMS) with distinguishing features: CMS1 (MSI Immune, 14%), hypermutated, microsatellite unstable, strong immune activation; CMS2 (Canonical, 37%), epithelial, chromosomally unstable, marked WNT and MYC signaling activation; CMS3 (Metabolic, 13%), epithelial, evident metabolic dysregulation; and CMS4 (Mesenchymal, 23%), prominent transforming growth factor β activation, stromal invasion, and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intra-tumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC - with clear biological interpretability - and the basis for future clinical stratification and subtype-based targeted interventions
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.
BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised
Recommended from our members
PANSAT communications -- Packet loss and data throughput of a software TNC for a low earth orbit amateur satellite
This project was commissioned by the Electrical and Computer Engineering Department of Worcester Polytechnic Institute to continue the design, development, and implementation of an end-to-end command and data handling communications system for use onboard a satellite in low earth orbit (LEO). Specifically, this project's main objectives were to evaluate alternative software Terminal Node Controller solutions and calculate data throughput and bit error rate (BER) figures for data transmissions with a satellite in LEO at the 1200 and 9600 baud rates. Recommendations for subsequent steps to improve the calculated performance of the system are provided
Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release
Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission