39 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Rime length, stress, and association domains

    Full text link
    Every regular Chinese syllable has a syllable tone (the tone we get when the syllable is read in isolation). In some Chinese languages, the tonal pattern of a multisyllabic expression is basically a concatenation of the syllable tones. In other Chinese languages, the tonal pattern of a multisyllabic expression is determined solely by the initial syllable. I call the former M -languages (represented by Mandarin) and the latter S -languages (represented by Shanghai). I argue that there is an additional difference in rime structures between the two language groups. In S-languages, all rimes are simple, i.e., there are no underlying diphthongs or codas. In M-languages, all regular rimes are heavy. I further argue that a syllable keeps its underlying tones only if it has stress. Independent metrical evidence tells us that heavy rimes may carry inherent stress. Thus, in M-languages, all regular syllables are stressed and retain their underlying tones (which may or may not undergo further changes). In contrast, in S-languages, regular rimes do not carry inherent stress; instead, only those syllables that are assigned stress by rule can keep their underlying tones and hence head a multisyllabic tonal domain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42998/1/10831_2005_Article_BF01440582.pd

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore