230 research outputs found

    A moderate protein diet does not cover the requirements of growing rabbits with high growth rate

    Full text link
    [EN] Genetic selection for feed efficiency has increased the growth rate and requirements of growing rabbits, while the protein content of commercial feeds has been adjusted to avoid digestive disorders. The aim of this work was to evaluate how a diet with moderate levels of protein content [146 g crude protein (CP)/kg] could be affecting protein and amino acids acquisition depending on the growth rate of the animals. From 189 weaned rabbits (28 days old), only 41 animals were selected at 42 days, in order to ensure the greatest variability for growth rate during fattening. To achieve this goal, animals came from three genetic lines: H and LP (maternal lines selected by litter size) and R (paternal line selected for growth rate), characterised by normal, moderate and high growth rate during the fattening period, respectively. Apparent faecal digestibility of dry matter (DM), CP and gross energy (GE) of the diet from 49-53 days of age, as well as the ileal apparent digestibility of DM, CP and amino acids at 63 days of age, was determined in all the selected animals. Protein, energy and amino acids retained in the empty body during the fattening period were also determined by slaughtering 15 weaning rabbits at 28 days, and the 41 selected animals at 63 days of age. Animals from the R line showed higher feed intake than those from maternal lines, as well as lower feed conversion ratio, even below that expected from their growth rate. Apparent faecal digestibility of GE and apparent ileal digestibility of DM, CP and cystine of the diet were higher in LP than in H rabbits (P < 0.05), showing intermediate values in R rabbits. However, apparent ileal digestibility of glutamic acid and glycine was significantly higher in R than in H rabbits (P < 0.05), showing intermediate values in LP rabbits. As expected, both daily protein and energy retained in the empty body increased as growth increased. However, R growing rabbits seem to have lower protein retained and higher energy retained in the empty body than that expected from their growth. In fact, protein to energy retained ratio was clearly lower for R growing rabbits. These results seem to show the possible existence of some limiting amino acid when current moderate protein diets are used in growing rabbits with high growth rates, recommending a review of the amino acid requirements for the growing rabbits from paternal lines.This study was supported by the Interministerial Commission for Science and Technology (CICYT) from the Spanish Government (AGL2017-85162-C2-1-R). The grant for Pablo Marin from the Ministry of Education, Culture and Sports (FPU-2014-01203) is also gratefully acknowledged.Marín-García, P.; Ródenas Martínez, L.; Martinez-Paredes, E.; Cambra López, M.; Blas Ferrer, E.; Pascual Amorós, JJ. (2020). A moderate protein diet does not cover the requirements of growing rabbits with high growth rate. Animal Feed Science and Technology. 264:1-11. https://doi.org/10.1016/j.anifeedsci.2020.114495S111264Alagón, G., Arce, O. N., Martínez-Paredes, E., Ródenas, L., Moya, V. J., Blas, E., … Pascual, J. J. (2016). Nutritive value of distillers dried grains with solubles from barley, corn and wheat for growing rabbits. Animal Feed Science and Technology, 222, 217-226. doi:10.1016/j.anifeedsci.2016.10.024Batey, I. L. (1982). Starch Analysis Using Thermostable alpha-Amylases. Starch - Stärke, 34(4), 125-128. doi:10.1002/star.19820340407Birolo, M., Trocino, A., Zuffellato, A., & Xiccato, G. (2016). Effect of feed restriction programs and slaughter age on digestive efficiency, growth performance and body composition of growing rabbits. Animal Feed Science and Technology, 222, 194-203. doi:10.1016/j.anifeedsci.2016.10.014Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.xCosta, C., Baselga, M., Lobera, J., Cervera, C., & Pascual, J. J. (2004). Evaluating response to selection and nutritional needs in a three-way cross of rabbits. Journal of Animal Breeding and Genetics, 121(3), 186-196. doi:10.1111/j.1439-0388.2004.00450.xEstany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005Gidenne, T., & Perez, J.-M. (2000). Replacement of digestible fibre by starch in the diet of the growing rabbit. I. Effects on digestion, rate of passage and retention of nutrients. Annales de Zootechnie, 49(4), 357-368. doi:10.1051/animres:2000127Lv, J.-M., Chen, M., Qian, L.-C., Ying, H.-Z., & Liu, J.-X. (2009). Requirement of crude protein for maintenance in a new strain of laboratory rabbit. Animal Feed Science and Technology, 151(3-4), 261-267. doi:10.1016/j.anifeedsci.2009.01.001Mínguez, C., Sanchez, J. P., EL Nagar, A. G., Ragab, M., & Baselga, M. (2015). Growth traits of four maternal lines of rabbits founded on different criteria: comparisons at foundation and at last periods after selection. Journal of Animal Breeding and Genetics, 133(4), 303-315. doi:10.1111/jbg.12197Partridge, G. G., Garthwaite, P. H., & Findlay, M. (1989). Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. The Journal of Agricultural Science, 112(2), 171-178. doi:10.1017/s0021859600085063Pascual, M., & Pla, M. (2007). Changes in carcass composition and meat quality when selecting rabbits for growth rate. Meat Science, 77(4), 474-481. doi:10.1016/j.meatsci.2007.04.009Pascual, M., Pla, M., & Blasco, A. (2008). Effect of selection for growth rate on relative growth in rabbits1,2. Journal of Animal Science, 86(12), 3409-3417. doi:10.2527/jas.2008-0976Quevedo, F., Cervera, C., Blas, E., Baselga, M., & Pascual, J. J. (2006). Long-term effect of selection for litter size and feeding programme on the performance of reproductive rabbit does 2. Lactation and growing period. Animal Science, 82(5), 751-762. doi:10.1079/asc200688Sánchez, J. P., Theilgaard, P., Mínguez, C., & Baselga, M. (2008). Constitution and evaluation of a long-lived productive rabbit line1. Journal of Animal Science, 86(3), 515-525. doi:10.2527/jas.2007-0217Savietto, D., Blas, E., Cervera, C., Baselga, M., Friggens, N. C., Larsen, T., & Pascual, J. J. (2012). Digestive efficiency in rabbit does according to environment and genetic type. World Rabbit Science, 20(3). doi:10.4995/wrs.2012.1152Savietto, D., Cervera, C., Ródenas, L., Martínez-Paredes, E., Baselga, M., García-Diego, F. J., … Pascual, J. J. (2014). Different resource allocation strategies result from selection for litter size at weaning in rabbit does. Animal, 8(4), 618-628. doi:10.1017/s1751731113002437Trocino, A., García Alonso, J., Carabaño, R., & Xiccato, G. (2013). A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Science, 21(1). doi:10.4995/wrs.2013.1285Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-

    Plasmatic Urea Nitrogen in Growing Rabbits with Different Combinations of Dietary Levels of Lysine, Sulphur Amino Acids and Threonine

    Full text link
    [EN] Formulating diets to maximize nutrient harnessing has positive effects on performance and environment. In the case of growing rabbits, clues exist indicating that animals with high growth rate when consuming current diets show lower protein retention than expected, and it could be related to amino acid supply. The aim of this work is to find the amino acid combination (27 experimental diets: 3 levels of the 3 main limiting amino acids: lysine, sulphur amino acids, and threonine) that would minimize the nitrogen excretion in the bloodstream, a marker of the efficiency in the amino acid use This combination is a good candidate to be tested in order to improve performance and reduce pollution. A total of 27 experimental diets were formulated starting from the same basal mixture, with a moderate content of crude protein and digestible energy (155 g and 9.86 MJ/kg of digestible matter (DM), respectively, both estimated). The contents of lysine, sulphur amino acids and threonine were variable. The first one, close to the current recommendations (Medium, M; 8.1, 5.8 and 6.9 g/kg DM for lysine, sulphur amino acids and threonine, respectively), and two other levels were on average 15% higher (High, H; 9.4, 6.6 and 7.8 g/kg DM for lysine, sulphur amino acids and threonine, respectively) or lower (Low, L; 6.7, 4.9 and 5.7 g/kg DM for lysine, sulphur amino acids and threonine, respectively). Diets were named with three letters, indicating lysine, sulphur amino acids and threonine levels, respectively. In total, 918 weaned rabbits (28 days old) were used (34 per diet). At weaning, animals were fed ad libitum with a commercial diet until day 46, day 47 each collective cage was randomly switched to one experimental diet. At day 48, blood samples were collected at 08:00h then the animals were subjected to 10 h of fasting and a second blood sample was extracted at 21.00h. At 08:00h, Pasmatic urea nitrogen (PUN) was higher with the L level of lysine (p< 0.001), unaffected by the level of sulphur amino acids and increased with the level of threonine (p< 0.001). At 21:00h, minimum PUN was observed with the MHL diet (14.72 +/- 0.661 mg/dL). Taken into account the usual recommendations (established for a diet containing 11.3 MJ DE/kg DM, and then being 0.72, 0.51 and 0.61 g/MJ DE for lysine, sulphur amino acids and threonine, respectively), these results suggest that a diet containing more lysine and sulphur amino acids per energy unit (around 0.82 and 0.67 g/MJ DE) could better fit the growing rabbit requirements, although studies on the effects of such a diet on performance and protein retention are necessary.This study was supported by the Interministerial Commission for Science and Technology (CICYT) from the Spanish Government (AGL2017-85162-C2-1-R). The grant for Pablo Marin from the Ministry of Education, Culture and Sports (FPU-2014-01203) is also gratefully acknowledged.Marín-García, P.; López Luján, MDC.; Ródenas Martínez, L.; Martinez-Paredes, E.; Blas Ferrer, E.; Pascual Amorós, JJ. (2020). Plasmatic Urea Nitrogen in Growing Rabbits with Different Combinations of Dietary Levels of Lysine, Sulphur Amino Acids and Threonine. Animals. 10(6):1-8. https://doi.org/10.3390/ani10060946S18106Quevedo, F., Cervera, C., Blas, E., Baselga, M., & Pascual, J. J. (2006). Long-term effect of selection for litter size and feeding programme on the performance of reproductive rabbit does 2. Lactation and growing period. Animal Science, 82(5), 751-762. doi:10.1079/asc200688Pascual, M., Pla, M., & Blasco, A. (2008). Effect of selection for growth rate on relative growth in rabbits1,2. Journal of Animal Science, 86(12), 3409-3417. doi:10.2527/jas.2008-0976Pascual, M., & Pla, M. (2007). Changes in carcass composition and meat quality when selecting rabbits for growth rate. Meat Science, 77(4), 474-481. doi:10.1016/j.meatsci.2007.04.009Marín-García, P. J., Ródenas, L., Martínez-Paredes, E., Cambra-López, M., Blas, E., & Pascual, J. J. (2020). A moderate protein diet does not cover the requirements of growing rabbits with high growth rate. Animal Feed Science and Technology, 264, 114495. doi:10.1016/j.anifeedsci.2020.114495Carabaño R., Villamide M.J., García J., Nicodemus N., Llorente A., Chamorro S., & Menoyo D. (2010). New concepts and objectives for protein-amino acid nutrition in rabbits: a review. World Rabbit Science, 17(1). doi:10.4995/wrs.2009.664Taboada, E., Mendez, J., & de Blas, J. (1996). The response of highly productive rabbits to dietary sulphur amino acid content for reproduction and growth. Reproduction Nutrition Development, 36(2), 191-203. doi:10.1051/rnd:19960204Taboada, E., Mendez, J., Mateos, G. ., & De Blas, J. . (1994). The response of highly productive rabbits to dietary lysine content. Livestock Production Science, 40(3), 329-337. doi:10.1016/0301-6226(94)90099-xDe Blas, J. C., Taboada, E., Nicodemus, N., Campos, R., Piquer, J., & Méndez, J. (1998). Performance response of lactating and growing rabbits to dietary threonine content. Animal Feed Science and Technology, 70(1-2), 151-160. doi:10.1016/s0377-8401(97)00063-1Roth-Maier, D. A., Ott, H., Roth, F. X., & Paulicks, B. R. (2004). Effects of the level of dietary valine supply on amino acids and urea concentration in milk and blood plasma of lactating sows. Journal of Animal Physiology and Animal Nutrition, 88(1-2), 39-45. doi:10.1046/j.0931-2439.2003.00458.xDonsbough, A. L., Powell, S., Waguespack, A., Bidner, T. D., & Southern, L. L. (2010). Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poultry Science, 89(2), 287-294. doi:10.3382/ps.2009-00401Marín-García, P. J., López-Luján, M. del C., Ródenas, L., Martínez-Paredes, E. M., Blas, E., & Pascual, J. J. (2020). Plasma urea nitrogen as an indicator of amino acid imbalance in rabbit diets. World Rabbit Science, 28(2), 63. doi:10.4995/wrs.2020.12781Van Milgen, J., & Dourmad, J.-Y. (2015). Concept and application of ideal protein for pigs. Journal of Animal Science and Biotechnology, 6(1). doi:10.1186/s40104-015-0016-1Fernández-Carmona J., Blas E., Pascual J.J., Maertens L., Gidenne T., Xiccato G., & García. (2010). Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Science, 13(4). doi:10.4995/wrs.2005.516Real Decreto 53/2013, Por el Que se Establecen las Normas Básicas Aplicables Para la Protección de los Animales Utilizados en Experimentación y Otros Fines Científicos, Incluyendo la Docencia. BOE 34https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-1337Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.xEstany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002Eggum, B. O. (1970). Blood urea measurement as a technique for assessing protein quality. British Journal of Nutrition, 24(4), 983-988. doi:10.1079/bjn19700101Nicodemus, N., Mateos, J., Blas, J. C. de, Carabaño, R., & Fraga, M. J. (1999). Effect of diet on amino acid composition of soft faeces and the contribution of soft faeces to total amino acid intake, through caecotrophy in lactating doe rabbits. Animal Science, 69(1), 167-170. doi:10.1017/s1357729800051201García, A. I., de Bias, J. C., & Carabaño, R. (2004). Effect of type of diet (casein-based or protein-free) and caecotrophy on ileal endogenous nitrogen and amino acid flow in rabbits. Animal Science, 79(2), 231-240. doi:10.1017/s1357729800090093Monteiro-Motta, A. C., Scapinello, C., Oliveira, A. F. G., Figueira, J. L., Catelan, F., Sato, J., & Stanquevis, C. E. (2013). Levels of lysine and methionine+cystine for growing New Zealand White rabbits. Revista Brasileira de Zootecnia, 42(12), 862-868. doi:10.1590/s1516-3598201300120000

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe

    Gaia focused product release: radial velocity time series of long-period variables

    Get PDF
    Stars and planetary system

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814
    corecore