700 research outputs found

    Urinary ATP as an indicator of infection and inflammation of the urinary tract in patients with lower urinary tract symptoms

    Get PDF
    BACKGROUND: Adenosine-5'-triphosphate (ATP) is a neurotransmitter and inflammatory cytokine implicated in the pathophysiology of lower urinary tract disease. ATP additionally reflects microbial biomass thus has potential as a surrogate marker of urinary tract infection (UTI). The optimum clinical sampling method for ATP urinalysis has not been established. We tested the potential of urinary ATP in the assessment of lower urinary tract symptoms, infection and inflammation, and validated sampling methods for clinical practice. METHODS: A prospective, blinded, cross-sectional observational study of adult patients presenting with lower urinary tract symptoms (LUTS) and asymptomatic controls, was conducted between October 2009 and October 2012. Urinary ATP was assayed by a luciferin-luciferase method, pyuria counted by microscopy of fresh unspun urine and symptoms assessed using validated questionnaires. The sample collection, storage and processing methods were also validated. RESULTS: 75 controls and 340 patients with LUTS were grouped as without pyuria (n = 100), pyuria 1-9 wbc ?l(-1) (n = 120) and pyuria ?10 wbc ?l(-1) (n = 120). Urinary ATP was higher in association with female gender, voiding symptoms, pyuria greater than 10 wbc ?l(-1) and negative MSU culture. ROC curve analysis showed no evidence of diagnostic test potential. The urinary ATP signal decayed with storage at 23°C but was prevented by immediate freezing at ??-20°C, without boric acid preservative and without the need to centrifuge urine prior to freezing. CONCLUSIONS: Urinary ATP may have a role as a research tool but is unconvincing as a surrogate, clinical diagnostic marker

    Inhomogeneous superconductivity in organic conductors: role of disorder and magnetic field

    Full text link
    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature TcT_c shows clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of TcT_c with impurities. Based on the time dependent Ginzburg-Landau theory, we derive a model to account for the striking feature of TcT_c in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated TcT_c quantitatively agrees with experiments. We also focus on the role of superconducting fluctuations on the upper critical fields Hc2H_{c2} of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that Hc2H_{c2} may be strongly enhanced by such fluctuations.Comment: to appear in Journal of Physics: Condensed Matte

    ‘It's all the way you look at it, you know’: reading Bill ‘Bojangles’ Robinson's film career

    Get PDF
    This paper engages with a major paradox in African American tap dancer Bill ‘Bojangles’ Robinson's film image – namely, its concurrent adherences to and contestations of dehumanising racial iconography – to reveal the complex and often ambivalent ways in which identity is staged and enacted. Although Robinson is often understood as an embodiment of popular cultural imagery historically designed to dehumanise African Americans, this paper shows that Robinson's artistry displaces these readings by providing viewing pleasure for black, as much as white, audiences. Robinson's racially segregated scenes in Dixiana (1930) and Hooray for Love (1935) illuminate classical Hollywood's racial codes, whilst also showing how his inclusion within these otherwise all-white films provides grounding for creative and self-reflexive artistry. The films' references to Robinson's stage image and artistry overlap with minstrelsy-derived constructions of ‘blackness’, with the effect that they heighten possible interpretations of his cinematic persona by evading representational conclusion. Ultimately, Robinson's films should be read as sites of representational struggle that help to uncover the slipperiness of performances of African American identities in 1930s Hollywood

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Innate Immune Suppression Enables Frequent Transfection with RNA Encoding Reprogramming Proteins

    Get PDF
    BACKGROUND: Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. METHODOLOGY/PRINCIPAL FINDINGS: RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-beta (Ifnb1), Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection

    Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans

    Get PDF
    While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function

    Interventions aimed at increasing research use in nursing: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been considerable interest recently in developing and evaluating interventions to increase research use by clinicians. However, most work has focused on medical practices; and nursing is not well represented in existing systematic reviews. The purpose of this article is to report findings from a systematic review of interventions aimed at increasing research use in nursing.</p> <p>Objective</p> <p>To assess the evidence on interventions aimed at increasing research use in nursing.</p> <p>Methods</p> <p>A systematic review of research use in nursing was conducted using databases (Medline, CINAHL, Healthstar, ERIC, Cochrane Central Register of Controlled Trials, and Psychinfo), grey literature, ancestry searching (Cochrane Database of Systematic Reviews), key informants, and manual searching of journals. Randomized controlled trials and controlled before- and after-studies were included if they included nurses, if the intervention was explicitly aimed at increasing research use or evidence-based practice, and if there was an explicit outcome to research use. Methodological quality was assessed using pre-existing tools. Data on interventions and outcomes were extracted and categorized using a pre-established taxonomy.</p> <p>Results</p> <p>Over 8,000 titles were screened. Three randomized controlled trials and one controlled before- and after-study met the inclusion criteria. The methodological quality of included studies was generally low. Three investigators evaluated single interventions. The most common intervention was education. Investigators measured research use using a combination of surveys (three studies) and compliance with guidelines (one study). Researcher-led educational meetings were ineffective in two studies. Educational meetings led by a local opinion leader (one study) and the formation of multidisciplinary committees (one study) were both effective at increasing research use.</p> <p>Conclusion</p> <p>Little is known about how to increase research use in nursing, and the evidence to support or refute specific interventions is inconclusive. To advance the field, we recommend that investigators: (1) use theoretically informed interventions to increase research use, (2) measure research use longitudinally using theoretically informed and psychometrically sound measures of research use, as well as, measuring patient outcomes relevant to the intervention, and (3) use more robust and methodologically sound study designs to evaluate interventions. If investigators aim to establish a link between using research and improved patient outcomes they must first identify those interventions that are effective at increasing research use.</p
    corecore