7 research outputs found

    Range limit dynamics of biocrusts in a changing climate

    Full text link
    Climate change continues to drive a broad range of responses among the world’s biota. For example, there are plants that now flower earlier, animals that have evolved different camouflage, and many species that are shifting their ranges. Range shifting is well-documented for highly mobile taxa such as birds and insects, yet little is known about range shifting in species that form biocrusts—communities of lichens, non-vascular plants, and microbes that live on the soil surface and play important functional roles in nutrient cycling and erosion control. Another key theme of climate change ecology is that some species mediate the responses of other species, for example, by buffering the local microclimate or altering the cycling of nutrients. In line with these two themes, the aim of my thesis is to investigate: 1) what drives range limits in species of biocrust; 2) how biocrust species ranges have responded to recent climate change; 3) how biocrust species ranges are likely to respond to future climate change; and 4) how biocrust species mediate the effects of climate change on soil biota through microclimate buffering. I found that biocrust species are generally carbon limited at their arid range limits (Chapter 2), which suggests that range limits in biocrusts represent the point at which carbon budgets become unsustainable. Chapter 3 describes a field study comparing the modern and historical (25-year-old) distributions of three biocrust species, in which I found no evidence that any species have shifted in space to counteract climate warming. Global species distribution models show that the area of future suitable habitat is likely to be highly variable among biocrust species (Chapter 4), and accessing this habitat will require dispersal over considerable distances (4.6 km yr-1 on average). Finally, I found that tundra lichen mats play a major role in buffering high soil temperatures during summer (Chapter 5). The findings of this thesis are foundational for understanding the spatial aspect of biocrust responses to climate change and can be used to predict and mitigate losses of ecosystem functioning in areas where biocrust species are pushed beyond their niche limits

    The global contribution of soil mosses to ecosystem services

    Get PDF
    Soil mosses are among the most widely distributed organisms on land. Experiments and observations suggest that they contribute to terrestrial soil biodiversity and function, yet their ecological contribution to soil has never been assessed globally under natural conditions. Here we conducted the most comprehensive global standardized field study to quantify how soil mosses influence 8 ecosystem services associated with 24 soil biodiversity and functional attributes across wide environmental gradients from all continents. We found that soil mosses are associated with greater carbon sequestration, pool sizes for key nutrients and organic matter decomposition rates but a lower proportion of soil-borne plant pathogens than unvegetated soils. Mosses are especially important for supporting multiple ecosystem services where vascular-plant cover is low. Globally, soil mosses potentially support 6.43 Gt more carbon in the soil layer than do bare soils. The amount of soil carbon associated with mosses is up to six times the annual global carbon emissions from any altered land use globally. The largest positive contribution of mosses to soils occurs under a high cover of mat and turf mosses, in less-productive ecosystems and on sandy and salty soils. Our results highlight the contribution of mosses to soil life and functions and the need to conserve these important organisms to support healthy soils.The study work associated with this paper was funded by a Large Research Grant from the British Ecological Society (no. LRB17\1019; MUSGONET). D.J.E. is supported by the Hermon Slade Foundation. M.D.-B. was supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), a project from the Spanish Ministry of Science and Innovation for the I + D + i (PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033a) and a project PAIDI 2020 from the Junta de Andalucía (P20_00879). E.G. is supported by the European Research Council grant agreement 647038 (BIODESERT). M.B. is supported by a Ramón y Cajal grant from Spanish Ministry of Science (RYC2021-031797-I). A.d.l.R is supported by the AEI project PID2019-105469RB-C22. L.W. and Jianyong Wang are supported by the Program for Introducing Talents to Universities (B16011) and the Ministry of Education Innovation Team Development Plan (2013-373). The contributions of T.G. and T.U.N. were supported by the Research Program in Forest Biology, Ecology and Technology (P4-0107) and the research projects J4-3098 and J4-4547 of the Slovenian Research Agency. The contribution of P.B.R. was supported by the NSF Biological Integration Institutes grant DBI-2021898. J. Durán and A. Rodríguez acknowledge support from the FCT (2020.03670.CEECIND and SFRH/BDP/108913/2015, respectively), as well as from the MCTES, FSE, UE and the CFE (UIDB/04004/2021) research unit financed by FCT/MCTES through national funds (PIDDAC)

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    25-year biocrust resurvey

    No full text

    Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: a global meta-analysis

    No full text
    Ecological restoration projects often have variable and unpredictable outcomes, and these can limit the overall impact on biodiversity. Previous syntheses have investigated restoration effectiveness by comparing average restored conditions to average conditions in unrestored or reference systems. Here, we provide the first quantification of the extent to which restoration affects both the mean and variability of biodiversity outcomes, through a global meta‐analysis of 83 terrestrial restoration studies. We found that, relative to unrestored (degraded) sites, restoration actions increased biodiversity by an average of 20%, while decreasing the variability of biodiversity (quantified by the coefficient of variation) by an average of 14%. As restorations aged, mean biodiversity increased and variability decreased relative to unrestored sites. However, restoration sites remained, on average, 13% below the biodiversity of reference (target) ecosystems, and were characterised by higher (20%) variability. The lower mean and higher variability in biodiversity at restored sites relative to reference sites remained consistent over time, suggesting that sources of variation (e.g. prior land use, restoration practices) have an enduring influence on restoration outcomes. Our results point to the need for new research confronting the causes of variability in restoration outcomes, and close variability and biodiversity gaps between restored and reference conditions
    corecore