10 research outputs found

    Pine sawdust biochar as a potential amendment for establishing trees in Appalachian mine spoils

    Get PDF
    Early growth and survival of tree seedlings is often poor on reclaimed coal surface mines in Appalachia. Biochar produced in bioenergy generation has potential for use as an amendment to improve seedling performance. Mine soil was collected from a recently reclaimed coal surface mine in Wise County, Virginia and mixed with loblolly pine (Pinus taeda L.) sawdust biochar, simulating application rates of 2.3, 11.2 and 22.5 Mg ha-1. Unplanted leaching columns and 4 L tree planting pots were filled with these biochar-soil mixtures, plus controls of pure mine soil and pure biochar. For the tree planting pots, additional pots were created where the biochar was applied as a topdressing at the same application rates as in the mixtures. One-year-old seedlings of both American sycamore (Platanus occidentalis L.) and black locust (Robinia pseudoacacia L.) were planted. Unplanted leaching columns were leached with collected rainwater for six months to simulate weathering. Trees were grown for one growing season. Black locust had higher average above-ground dry woody biomass (24.4 g) than American sycamore (17.0 g), and also higher below-ground biomass (61.0 g compared to 30.2 g). The pure biochar produced greater average below-ground biomass (99.9 g) than the pure mine soil (46.9 g). All of the biochar treatments produced greater average above-ground woody biomass (19.1 g – 33.4 g) than the pure mine soil (10.9 g). After weathering, biochar provided less available soil phosphorus, calcium and iron than the mine soil itself while increasing soil carbon and organic matter. High (22.5 Mg ha-1) biochar applications increased soil volumetric water holding capacity to 18.6% compared to 13.4% for pure mine soil. Naturally-occurring herbaceous biomass in the pots was negatively correlated with above-ground woody biomass at r = -0.483. Topdressing and full incorporation of biochar were not significantly different in their effects on biomass. Results suggest that pine biochar either broadcast at 2.3 - 22.5 Mg ha‑1, or mixed in planting holes with backfill soil, will promote faster above-ground growth and larger root systems in seedlings in mine soils. Further studies should test these methods in the field over multiple years and further refine recommendations of the rate of biochar to use and how best to apply it. New systems are being developed in Appalachia to produce biofuels and biochar from local biomass and to recycle biochar into the land base to enhance future biomass productivity. Applying 4 L of biochar mixed with the backfill of newly-planted trees is the top recommended practice for tree performance

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Table_1_Factors associated with foodborne pathogens and indicator organisms in agricultural soils.pdf

    No full text
    Soil can be a route for contamination of fresh fruits and vegetables. While growers routinely manage soil nutrient levels, little research exists on the synergistic or antagonistic effects of soil nutrients on foodborne pathogens. Data on foodborne pathogen prevalence in unamended soils is also relatively limited in literature. This study evaluated foodborne pathogen prevalence (Salmonella, Listeria monocytogenes) and concentration of indicator bacteria (total coliforms, generic Escherichia coli) in agricultural soils, and characterized associations between soil properties (e.g., macro- and micro-nutrient levels) and each microbial target. Three Virginia produce farms, representing different regions and soil types, were sampled four times over 1 year (October 2021–November 2022). For each individual farm visit, composite soil samples were collected from 20 sample sites (25 m2) per farm per visit for microbial and nutrient analysis (n = 240). Samples (25 g) were processed for Listeria spp. and Salmonella using a modified FDA BAM method; samples (5 g) were enumerated for generic E. coli and total coliforms (TC) using Petrifilm. Presumptive Listeria spp. and Salmonella isolates were confirmed by PCR using the sigB and invA genes, respectively. Soil nutrients from each sample were tested and evaluated for their association with each microbial target by Bayesian Mixed Models. Salmonella prevalence was 4.2% (10/240), with 90% (9/10) recovered on Farm C. Listeria spp. and L. monocytogenes prevalence were 10% (24/240) and 2.5% (6/240), respectively. When samples were positive for generic E. coli (107/240), the average concentration was 1.53 ± 0.77 log10 CFU/g. Soil pH was positively associated with L. monocytogenes [Odds Ratio (OR) = 5.5] and generic E. coli (OR = 4.9) prevalence. There was no association between Salmonella prevalence and any evaluated factor; however, Salmonella was 11.6 times more likely to be detected on Farm C, compared to other farms. Results show pathogen prevalence was relatively low in unamended soils, and that factors influencing prevalence and concentration varied by microbial target and farm.</p

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic : an international, multicenter, comparative cohort study

    No full text
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Delaying surgery for patients with a previous SARS-CoV-2 infection

    Get PDF
    Not availabl

    Elective Cancer Surgery in COVID-19–Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study

    No full text

    Stroke genetics informs drug discovery and risk prediction across ancestries

    No full text
    corecore