297 research outputs found

    Hyperkahler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace

    Get PDF
    Kahler manifolds have a natural hyperkahler structure associated with (part of) their cotangent bundles. Using projective superspace, we construct four-dimensional N = 2 models on the tangent bundles of some classical Hermitian symmetric spaces (specifically, the four regular series of irreducible compact symmetric Kahler manifolds, and their non-compact versions). A further dualization yields the Kahler potential for the hyperkahler metric on the cotangent bundle.Comment: 47 pages, typos corrected, version accepted by JHE

    Noncommutative Geometry, Extended W(infty) Algebra and Grassmannian Solitons in Multicomponent Quantum Hall Systems

    Full text link
    Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of NN-component electrons at the integer filling factor Îœ=k≀N\nu=k\leq N. The basic algebra is the SU(N)-extended W∞_{\infty}. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,kG_{N,k} sigma model, and the dynamical field is the Grassmannian GN,kG_{N,k} field, describing k(N−k)k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).Comment: 15 pages (no figures

    Fractional helicity, Lorentz symmetry breaking, compactification and anyons

    Full text link
    We construct the covariant, spinor sets of relativistic wave equations for a massless field on the basis of the two copies of the R-deformed Heisenberg algebra. For the finite-dimensional representations of the algebra they give a universal description of the states with integer and half-integer helicity. The infinite-dimensional representations correspond formally to the massless states with fractional (real) helicity. The solutions of the latter type, however, break down the (3+1)DD Poincar\'e invariance to the (2+1)DD Poincar\'e invariance, and via a compactification on a circle a consistent theory for massive anyons in DD=2+1 is produced. A general analysis of the ``helicity equation'' shows that the (3+1)DD Poincar\'e group has no massless irreducible representations with the trivial non-compact part of the little group constructed on the basis of the infinite-dimensional representations of sl(2,\CC). This result is in contrast with the massive case where integer and half-integer spin states can be described on the basis of such representations, and means, in particular, that the (3+1)DD Dirac positive energy covariant equations have no massless limit.Comment: 19 pages; minor changes, references added. To appear in Nucl. Phys.

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95

    Get PDF
    We report microwave surface resistance (Rs) measurements on two very-high-quality YBa2Cu3O6.95 crystals which exhibit extremely low residual loss at 1.2 K (2-6 ΌΩ at 2 GHz), a broad, reproducible peak at around 38 K, and a rapid increase in loss, by 4 orders of magnitude, between 80 and 93 K. These data provide one ingredient in the determination of the temperature dependence of the real part of the microwave conductivity, σ1(T), and of the quasiparticle scattering time. The other necessary ingredient is an accurate knowledge of the magnitude and temperature dependence of the London penetration depth, λ(T). This is derived from published data, from microwave data of Anlage, Langley, and co-workers and from, high-quality ÎŒSR data. We infer, from a careful analysis of all available data, that λ2(0)/λ2(T) is well approximated by the simple function 1-t2, where t=T/Tc, and that the low-temperature data are incompatible with the existence of an s-wave, BCS-like gap. Combining the Rs and λ(T) data, we find that σ1(T), has a broad peak around 32 K with a value about 20 times that at Tc. Using a generalized two-fluid model, we extract the temperature dependence of the quasiparticle scattering rate which follows an exponential law, exp(T/T0), where T0≊12 K, for T between 15 and 84 K. Such a temperature dependence has previously been observed in measurements of the nuclear spin-lattice relaxation rate. Both the uncertainties in our analysis and the implications for the mechanism of high-temperature superconductivity are discussed

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0→K+K−KS0B^0 \to K^+K^-K^0_S, B+→K+K−K+B^+ \rightarrow K^+K^-K^+, and B+→KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+→K+K−K+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+→ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0→K+K−KS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase ÎČeff(ϕ(1020)KS0)=(21±6±2)∘\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+→KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(4−5+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2â€Č(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+

    Get PDF
    We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471 7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+)) 710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2 710-5 at 90% confidence level

    Search for Darkonium in e+e- Collisions

    Get PDF
    Collider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A0 ) is light enough to generate an attractive force between dark fermions. We report herein a search for a JPC ÂŒ 1−− darkonium state, the ϒD, produced in the reaction eĂŸe− → ÎłÏ’D, ϒD → A0 A0 A0 , where the dark photons subsequently decay into pairs of leptons or pions, using 514 fb−1 of data collected with the BABAR detector. No significant signal is observed, and we set bounds on the Îł − A0 kinetic mixing as a function of the dark sector coupling constant for 0.001 < mA0 < 3.16 GeV and 0.05 < mϒD < 9.5 GeV.publishedVersio

    Measurement of the CP-Violating Asymmetry Amplitude sin2ÎČ\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
    • 

    corecore