781 research outputs found

    A new chiral ligand: 2,6-bis 4(S)-isopropyl-1-phenyl-4,5-dihydro-1H-imidazol-2-yl pyridine

    Get PDF
    The title compound, C29H33N5, is a new chiral bis(imidazolyl) pyridine derivative with a skeleton similar to the bis(oxazolyl) pyridine derivatives, which have been extensively used as ligands in various asymmetric catalytic reactions. The most prominent feature of the present compound is the considerable sp(2) character of N atoms of the imidazoline rings. The substituents at the Nsp(2) atoms can provide a means for tuning the electronic and conformational properties of the compound

    Kaluza-Klein gravitino production with a single photon at e^+ e^- colliders

    Full text link
    In a supersymmetric large extra dimension scenario, the production of Kaluza-Klein gravitinos accompanied by a photino at e^+ e^- colliders is studied. We assume that a bulk supersymmetry is softly broken on our brane such that the low-energy theory resembles the MSSM. Low energy supersymmetry breaking is further assumed as in GMSB, leading to sub-eV mass shift in each KK mode of the gravitino from the corresponding graviton KK mode. Since the photino decays within a detector due to its sufficiently large inclusive decay rate into a photon and a gravitino, the process e^+ e^- -> photino + gravitino yields single photon events with missing energy. Even if the total cross section can be substantial at sqrt(s)=500 GeV, the KK graviton background of e^+ e^- -> photon + graviton is kinematically advantageous and thus much larger. It is shown that the observable, sigma(e^-_L)-sigma(e^-_R), can completely eliminate the KK graviton background but retain most of the KK gravitino signal, which provides a unique and robust method to probe the supersymmetric bulk.Comment: Reference added and typos correcte

    A New Type of Dark Energy Model

    Full text link
    In this paper, we propose a general form of the equation of state (EoS) which is the function of the fractional dark energy density Ωd\Omega_{d}. At least, five related models, the cosmological constant model, the holographic dark energy model, the agegraphic dark energy model, the modified holographic dark energy model and the Ricci scalar holographic dark energy model are included in this form. Furthermore, if we consider proper interactions, the interactive variants of those models can be included as well. The phase-space analysis shows that the scaling solutions may exist both in the non-interacting and interacting cases. And the stability analysis of the system could give out the attractor solution which could alleviate the coincidence problem.Comment: Minor modifications, references adde

    J/ψ+c+cˉJ/\psi + c + \bar{c} Photoproduction in e+ee^+ e^- Scattering

    Full text link
    We investigate the J/ψJ/\psi + c + cˉ\bar{c} photoproduction in e+ee^+ e^- collision at the LEP II energy. The physical motivations for this study are: 1) such next-to-leading order(NLO) process was not considered in previous investigations of J/ψJ/\psi photoproduction in e+ee^+ e^- interaction, and it is worthwhile to do so in order to make sound predictions for experimental comparison; 2) from recent Belle experiment results, the process with same final states at the BB factory has a theoretically yet unexplainable large fraction; hence it is interesting to see what may happen at other colliders; 3) the existing LEP data are marginal in observing such process, and at the planed Linear Colliders(LCs) this process can be measured with high accuracy; 4) it is necessary to take this process into consideration in the aim of elucidating the quarkonium production mechanism, especially in testing the universality of NRQCD nonperturbative matrix elements via J/ψJ/\psi photoproduction in electron-position collisions.Comment: 15 pages, 3 figure

    Inclusive Charmonium Production via Double ccˉc \bar c in e+ee^+e^- Annihilation

    Full text link
    Motivated by the recent observation of double charm quark pair production by the Belle Collaboration, we calculate the complete O(αs2){\cal O}(\alpha_{s}^{2}) inclusive production cross sections for ηc\eta_{c}, J/ψJ/\psi, and χcJ\chi_{cJ}(J=0, 1, 2) plus ccˉc\bar{c} in e+ee^+ e^- annihilation through a virtual photon. We consider both color-singlet and color-octet contributions, and give the analytical expressions for these cross sections. The complete color-singlet calculations are compared with the approximate fragmentation calculations as functions of the center-of-mass energy s\sqrt{s}. We find that most of the fragmentation results substantially overestimate the cross sections (e.g. by a factor of \sim4 for χc1\chi_{c1} and χc2\chi_{c2}) at the Belle and BaBar energy s=10.6\sqrt{s}=10.6GeV. The fragmentation results become a good approximation only when s\sqrt{s} is higher than about 100GeV. We further calculate the color-octet contributions to these cross sections with analytical expressions. We find that while the color-octet contribution to J/ψJ/\psi inclusive production via double charm is negligible (only about 3%), the color-octet contributions to χc1\chi_{c1} and χc2\chi_{c2} can be significant.Comment: 23 pages, 9 figures; color-octet contributions to the double charm inclusive production of J/psi and chi_{cJ} (J=0,1,2) are added; references are added; No change for the color-singlet par

    Statefinder diagnostic and stability of modified gravity consistent with holographic and new agegraphic dark energy

    Full text link
    Recently one of us derived the action of modified gravity consistent with the holographic and new-agegraphic dark energy. In this paper, we investigate the stability of the Lagrangians of the modified gravity as discussed in [M. R. Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space Sci. 326 (2010) 27]. We also calculate the statefinder parameters which classify our dark energy model.Comment: 12 pages, 2 figures, accepted by Gen. Relativ. Gravi

    Novel venom-derived inhibitors of the human EAG channel, a putative antiepileptic drug target

    Get PDF
    Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go voltage-gated potassium channel hEAG1 (K10.1) lead to developmental disorders with associated infantile-onset epilepsy. However, the physiological role of hEAG1 in the central nervous system remains elusive. Potent and selective antagonists of hEAG1 are therefore much sought after, both as pharmacological tools for studying the (patho)physiological functions of this enigmatic channel and as potential leads for development of anti-epileptic drugs. Since animal venoms are a rich source of potent ion channel modifiers that have been finely tuned by millions of year of evolution, we screened 108 arachnid venoms for hEAG1 inhibitors using electrophysiology. Two hit peptides (Aa1a and Ap1a) were isolated, sequenced, and chemically synthesised for structure-function studies. Both of these hEAG1 inhibitors are C-terminally amidated peptides containing an inhibitor cystine knot motif, which provides them with exceptional stability in both plasma and cerebrospinal fluid. Aa1a and Ap1a are the most potent peptidic inhibitors of hEAG1 reported to date, and they present a novel mode of action by targeting both the activation and inactivation gating of the channel. These peptides should be useful pharmacological tools for probing hEAG1 function as well as informative leads for the development of novel anti-epileptic drugs

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore