271 research outputs found

    Three-dimensional cephalometric evaluation of maxillary growth following in utero repair of cleft lip and alveolar-like defects in the mid-gestational sheep model

    Get PDF
    Objective: To evaluate maxillary growth following in utero repair of surgically created cleft lip and alveolar (CLA)-like defects by means of three-dimensional (3D) computer tomographic (CT) cephalometric analysis in the mid-gestational sheep model. Methods: In 12 sheep fetuses a unilateral CLA-like defect was created in utero (untreated control group: 4 fetuses). Four different bone grafts were used for the alveolar defect closure. After euthanasia, CT scans of the skulls of the fetuses, 3D re-constructions, and a 3D-CT cephalometric analysis were performed. Results: The comparisons between the operated and nonoperated skull sides as well as of the maxillary asymmetry among the experimental groups revealed no statistically significant differences of the 12 variables used. Conclusions: None of the surgical approaches used for the in utero correction of CLA-like defects seem to affect significantly postsurgical maxillary growth; however, when bone graft healing takes place, a tendency for almost normal maxillary growth can be observed. Copyright (c) 2006 S. Karger AG, Basel

    Cross-Talk and Information Transfer in Mammalian and Bacterial Signaling

    Get PDF
    In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content. This may have played a role in the evolution of new functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation observed in many bacterial two-component systems may partly be due to the loss of information content due to cross-talk

    Heart rate variability in non-apneic snorers and controls before and after continuous positive airway pressure

    Get PDF
    BACKGROUND: We hypothesized that sympathetic nervous system activity (SNSA) is increased and parasympathetic nervous system activity (PNSA) is decreased during non-rapid eye movement (NREM) sleep in non-apneic, otherwise healthy, snoring individuals compared to control. Moreover, we hypothesized that these alterations in snoring individuals would be more evident during non-snoring than snoring when compared to control. METHODS: To test these hypotheses, heart rate variability was used to measure PNSA and SNSA in 11 normotensive non-apneic snorers and 12 control subjects before and 7-days after adapting to nasal continuous positive airway pressure (nCPAP). RESULTS: Our results showed that SNSA was increased and PNSA was decreased in non-apneic snorers during NREM compared to control. However, these changes were only evident during the study in which snoring was eliminated with nCPAP. Conversely, during periods of snoring SNSA and PNSA were similar to measures obtained from the control group. Additionally, within the control group, SNSA and PNSA did not vary before and after nCPAP application. CONCLUSION: Our findings suggest that long-lasting alterations in autonomic function may exist in snoring subjects that are otherwise healthy. Moreover, we speculate that because of competing inputs (i.e. inhibitory versus excitatory inputs) to the autonomic nervous system during snoring, the full impact of snoring on autonomic function is most evident during non-snoring periods

    Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells

    Get PDF
    BACKGROUND: Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. METHODS: Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 10(6 )structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. RESULTS: The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. CONCLUSION: Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs

    Opportunities to Learn Mathematics Pedagogy and Connect Classroom Learning to Practice: A Study of Future Teachers in the United States and Singapore

    Get PDF
    In this study, we conducted secondary analyses using the TEDS-M database to explore future mathematics specialists teachers’ opportunities to learn (OTL) how to teach mathematics. We applied latent class analysis techniques to differentiate among groups of prospective mathematics specialists with potentially different OTL mathematics pedagogy within the United States and Singapore. Within the United States, three subgroups were identified: (a) Comprehensive OTL, (b) Limited OTL, and (c) OTL Mathematics Pedagogy. Within Singapore, four subgroups were identified: (a) Comprehensive OTL, (b) Limited Opportunities to Connect Classroom Learning with Practice, (c) OTL Mathematics Pedagogy, and (d) Basic OTL. Understanding the opportunities different prospective teachers had to learn from and their experiences with different components of instructional practice in university and practicum settings has implications for teacher preparation programs

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40
    • 

    corecore