40 research outputs found

    Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg.Thermal modification of wood is an effective method to improve some of the properties of wood. It is reported on studies of vacuum thermal-treated wood species by magnetic resonance methods. Wood species such as Scots pine (Pinus sylvestris), birch (Betula pendula), Russian larch (Larix sibirica), Norway spruce (Picea abies), small-leaved lime (Tilia cordata) were vacuum treated by heat at 220 °C with various durations up to 8 h. This selection of wood species was investigated by electron paramagnetic resonance, nuclear magnetic resonance and microscopy methods before and after the thermal treatment. Electron paramagnetic resonance experiments revealed changes in the amount of free radicals in samples with the thermal treatment duration. Additional information on magnetic relaxation of 1H nuclei in samples at room temperature was obtained. Optical microscope analysis helped to detect structural changes in the thermally modified wood. Important properties of wood such as wood hardness and humidity absorption were also studied. The original results that were obtained correlate and complement each other, and clarify changes in the wood structure that appear with the heat treatment

    Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states with the ATLAS detector

    Get PDF
    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states is performed using 20.3 fb −1 of pp collision data recorded at √ s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the W H / Z H invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets

    A search for tt̄ resonances using lepton-plus-jets events in proton-proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−¹ of proton-proton collision data collected at a centre-of-mass energy of √s=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b̄, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt̄. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV

    Search for WtbqqbbW' \rightarrow tb \rightarrow qqbb W ′ → t b → q q b b decays in pppp p p collisions at s\sqrt{s} s  = 8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of s√=8 TeVs=8 TeV and corresponds to 20.3 fb −120.3 fb −1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV TeV. bb-tagging is used to identify jets originating from bb-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tbW′→tb cross section times branching ratio ranging from 0.16pb0.16pb to 0.33pb0.33pb for left-handed W′W′ bosons, and ranging from 0.10pb0.10pb to 0.21pb0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′ boson

    Attalea spectabilis

    No full text
    corecore