856 research outputs found

    Structure–Activity Relationships in NHC–Silver Complexes as Antimicrobial Agents

    Get PDF
    : Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future

    The collagenic structure of human digital skin seen by scanning electron microscopy after Ohtani maceration technique.

    Get PDF
    We performed a morphological scanning electron microscope (SEM) study to describe the fine structure and disposition of collagenous tissue in the human toe. After therapeutic amputation of a human right Leg, we applied the Othani maceration technique to the skin of three toes surgically explanted from the foot. We distinguished eight cutaneous regions and focused on some specialized collagenous structures differing in the thickness of the skin. The eight areas investigated were: the dorsal skin, the eponychium, the perionychium, the hyponychium, the region under the visible nail, the nail root, the plantar skin and finally the toe tip. Each of these areas is characterized by a distinctive collagenous surface disposition, with some peculiar features mostly related to dermal. papillae. At high magnification, we observed the spatial arrangement of the cottagen fibers constituting the top of the dermal, papillae that represents the attachment site of the proliferative basal layer of the epidermis. We also noted an impressive density of collagen fibers throughout the thickness of the dermal layer, organized in specialized structures and constituting the skeleton of dermal, thermoreceptorial corpuscles or sweat glands. A combination of SEM and Ohtani technique disclosed the three-dimensional architecture of the collagenous matrix of tarsal skin under physiologic conditions, giving a detailed description of the most reactive tissue during pathologic processes

    Plexiform vascular structures in the human digital dermal layer: a SEM-corrosion casting morphological study

    Get PDF
    This study aimed to describe the impressive diversity of vascular plexiform structures of the hypodermal layer of human skin. We chose the human body site with the highest concentration of dermal corpuscles, the human digit, and processed it with the corrosion casting technique and scanning electron microscopy analysis (SEM). This approach proved to be the best tool to study these microvascular architectures, free from any interference by surrounding tissues. We took high-definition pictures of the vascular network of sweat glands, thermoreceptorial and tactile corpuscles, the vessels constituting the glomic bodies and those feeding the hair follicles. We observed that the three-dimensional disposition of these vessels strictly depends on the shape of the corpuscles supplied. We could see the tubular vascularization of the excretory duct of sweat glands and the ovoid one feeding their bodies, sometimes made up of two lobes. In some cases, knowledge of these morphological data regarding the normal disposition in space and intrinsic vascularization structure of the dermal corpuscles can help to explain many of the physiopathological changes occurring during chronic microangiopathic diseases

    Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report

    Get PDF
    Purpose. To present preliminary clinical experience with Matrix-induced autologous chondrocyte implantation, a new tissue-engineering technique for treatment of deep cartilage defects, in which autologous chondrocytes are seeded on a tridimensional scaffold provided by a bilayer type I–III collagen membrane. Methods. From December 1999 to January 2001, 13 patients underwent implantation procedure for deep cartilage defects. Age of patients ranged from 18 to 49 years (mean age, 35 years). The mean defect size was 3.5 cm 2 (range, 2.0–4.5 cm 2 ). Clinical and functional evaluation were performed using various score systems for the ankle and the knee, and magnetic resonance imaging was performed at 6 and 12 months postoperatively. Membrane structure and cellular population were investigated by light microscopy, scanning electron microscopy, and electrophoresis before implantation. Results. The mean follow-up was 6.5 months (range, 2–15 months). No complications were observed in the postoperative period. The 6 patients with a minimum follow-up of 6 months showed an improvement in clinical and functional status after surgery. Magnetic resonance images showed the presence of hyaline-like cartilage at the site of implantation; there was evidence of chondroblasts and type II collagen inside the seeded membrane. Conclusion. Matrix-induced autologous chondrocyte implantation offers several advantages with respect to the traditional cultured cell procedure. These include technical simplicity, short operating time, minimal invasiveness, and easier access to difficult sites. It appears to be a reliable method for the repair of deep cartilage defects

    Controversies in ACL revision surgery: Italian expert group consensus and state of the art

    Get PDF
    Background Revision ACL reconstruction is a complex topic with many controversies and not-easy-to-make decisions. The authors' aim is to provide some feasible advice that can be applied in daily clinical practice with the goal of facilitating the decision-making process and improving the outcomes of patients subjected to revision ACL reconstruction. Methods A national survey with seven questions about the most controversial topics in revision ACL reconstruction was emailed to members of two societies: SIOT and SIAGASCOT. The participants' answers were collected, the most recent literature was analyzed, and a consensus was created by the authors, according to their long-term surgical experience. Conclusions The decision-making process in revision ACL reconstruction starts with a standardized imaging protocol (weight-bearing radiographs, CT scan, and MRI). One-stage surgery is indicated in almost all cases (exceptions are severe tunnel enlargement and infection), while the choice of graft depends on the previously used graft and the dimensions of the tunnels, with better clinical outcomes obtained for autografts. Additional procedures such as lateral extra-articular tenodesis in high-grade pivot-shift knees, biplanar HTO in the case of severe coronal malalignment, and meniscal suture improve the clinical outcome and should be considered case by case

    Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation

    Get PDF
    The collagen meniscus implant (CMI) is a tissue-engineering technique designed to stimulate regeneration of meniscus-like tissue in cases of irreparable tears or previous meniscectomy. CMI morphology was investigated before and after implantation by light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In a case series biopsy specimens were harvested from four patients who underwent a second arthroscopic look 6 months after placement of the CMI. CMI sections appeared composed of parallel connective laminae of 10-30 mu m, connected by smaller bundles (5-10 mu m). This connective network formed lacunae with diameters between 40 and 60 mu m. At greater magnification, the walls of the lacunae demonstrated tightly packed and randomly distributed collagen fibrils, with diameters ranging from 73 to 439 nm. In the biopsy specimens, the lacunae were filled with connective tissue that contained newly formed vessels and fibroblast-like cells, presenting an abundant rough endoplasmic reticulum and several mitochondria. In the extracellular matrix, the collagen fibrils showed uniform diameters (126 nm +/- 32 nm). The original structure of CMI was still recognizable, and no inflammatory cells were detected within the implant. The morphological findings of this case series demonstrate that CMI provides a three-dimensional scaffold suitable for colonization by precursor cells and vessels and leading to the formation of a fully functional tissue

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore