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Abstract: The collagen meniscus implant (CMI) is a tissue-engineering technique designed to
stimulate regeneration of meniscus-like tissue in cases of irreparable tears or previous
meniscectomy. CMI morphology was investigated before and after implantation by light
microscopy, scanning electron microscopy (SEM), and transmission electron microscopy
(TEM). In a case series biopsy specimens were harvested from four patients who underwent
a second arthroscopic look 6 months after placement of the CMI. CMI sections appeared
composed of parallel connective laminae of 10–30 �m, connected by smaller bundles (5–10
�m). This connective network formed lacunae with diameters between 40 and 60 �m. At
greater magnification, the walls of the lacunae demonstrated tightly packed and randomly
distributed collagen fibrils, with diameters ranging from 73 to 439 nm. In the biopsy speci-
mens, the lacunae were filled with connective tissue that contained newly formed vessels and
fibroblast-like cells, presenting an abundant rough endoplasmic reticulum and several mito-
chondria. In the extracellular matrix, the collagen fibrils showed uniform diameters (126
nm � 32 nm). The original structure of CMI was still recognizable, and no inflammatory cells
were detected within the implant. The morphological findings of this case series demonstrate
that CMI provides a three-dimensional scaffold suitable for colonization by precursor cells
and vessels and leading to the formation of a fully functional tissue. © 2005 Wiley Periodicals, Inc.
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INTRODUCTION

Degenerative joint changes may often follow meniscectomy
and many patients complain of knee pain after this proce-
dure.1–6 Different open and arthroscopic techniques have
thus been described for repairing meniscal tears.7–10 How-
ever, some lesions are difficult to treat because of their
location and shape, and also because tissue quality might not
permit a stable repair, as in degenerative lesion. Meniscus
allografts can be useful for total meniscectomies, but this
invasive procedure is technically demanding and carries po-
tential risks of transmissible diseases.11

The collagen meniscus implant (CMI) (ReGen Biologics,
Inc., Franklin Lakes, NJ) is a tissue-engineering technique,
described in 1992, designed for stimulating regeneration of
meniscus-like tissue.12 This method has been adopted for
patients who underwent partial meniscectomy or presented
with irreparable meniscus tears.13–16

CMI is composed of Type I collagen derived from bovine
Achilles tendon and enriched with glycosaminoglycans (GAGs),
including chondroitin sulfate and hyaluronic acid, in order to
stimulate cellular ingrowth. It is processed chemically and phys-
ically to remove molecular antigens and noncollagenous mate-
rials.15,17 The shape is similar to the human meniscus and the
materials used are biocompatible (Figure 1).13–16

Preliminary clinical results showed a significant improve-
ment of symptoms in eight of eight treated patients with a
follow-up of about 6 years.13,14 Human biopsy specimens
harvested 1 year after implantation showed cellular coloni-
zation and tissue ingrowth within the scaffold. Light micros-
copy observations demonstrated newly formed fibrocartilage
with dense, well-organized collagen bundles.13,14,16

However, there are no published ultrastructural data re-
garding CMI before and after implantation in humans. In the
present case series the objective was to report pre- and
postoperative findings observed by light microscopy, scan-
ning electron microscopy (SEM), and transmission electron
microscopy (TEM). It was hypothesized that the newly
formed tissue would have morphological characteristic sim-
ilar to native meniscus tissue.
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MATERIALS AND METHODS

CMI was performed on four patients, affected by traumatic
irreparable tears of the posterior horn of the medial meniscus.
All the procedures were carried out arthroscopically accord-
ing to the surgical technique described by Rodkey and co-
workers (Figure 2).13,16 Patients’ ages ranged from 24 to 50
years, with an average of 38 years. The meniscus tear was the
sole intrarticular lesion detected, and the chondral surfaces of
the medial compartment were intact.

CMI samples were collected at the time of surgery from
residual portions of the scaffolds implanted in these patients.
Biopsy specimens were harvested 6 months after implanta-
tion from the same patients, at the time of a second arthro-
scopic look, performed for evaluating the implant evolution.
No patients complained of pain or other symptoms in the
operated knee. Written informed consent was obtained for
performing both arthroscopy and biopsy.

All knees were evaluated before CMI and at the time of
biopsy with the use of the Lysholm II score and Tegner
activity scale. The biopsies were performed with an 18G
Temno device (Allegiance Healthcare Corp., McGaw Park,
IL), routinely used for prostate biopsies. This device min-
imized trauma to the implant–new tissue complex. Biopsy
specimens measured 8 mm in length and 0.7 mm in diam-
eter.

All samples were immediately fixed in 2.5% paraformal-
dehyde and 2% glutaraldehyde in 0.1M Na-cacodylate buffer
(pH 7.4) for 6 h at 4°C. Subsequently, they were subdivided
in three different groups.

Light Microscopy. Specimens were dehydrated in as-
cending grades of ethanol and then embedded in paraffin.
They were sectioned at a 5-�m thickness with a Reichert
Ultracut S ultratome (Leica, Vienna, Austria) and then
stained with hematoxylin and eosin. Histological evaluation
was performed with light microscopy (Nikon Eclipse E600
microscope, Nikon, Tokyo, Japan).

Scanning Electron Microscopy. Specimens were post-
fixed in a solution of 1% osmium tetroxide and 1.5% potas-
sium ferrocyanide for 3 h. Slices were washed in pH 7.2
phosphate-buffered saline (PBS), dehydrated in ascending
grades of ethanol and subjected to critical-point drying in
CO2. Dried slices were mounted on standard stubs, gold-
coated in an Emitech K550 sputter coater (Emitech Products
Inc., Houston, TX) and then observed on a Philips XL-30
SEM-FEG microscope (FEI, Eindhoven, Netherlands) fitted
with a 1424 � 968 pixel frame store for direct digital imag-
ing. Collagen fibril diameters before and after implantation
were compared by measuring 1000 fibrils on 40 SEM images.
The diameter of collagen fibrils was determined by a digital
ruler (AnalySIS, Soft Imaging System, Munster, Germany)
and divided into 25 diameter classes, each corresponding to a
14-nm interval.

Transmission Electron Microscopy. Specimens were
postfixed for 2 h with 1% osmium tetroxide in 0.1M Na-
cacodylate buffer (pH 7.2) at 4°C. After standard dehydration

TABLE I. The Lysholm Score and Tegner Activity Scale
Increased in all Operated Knees During the 6-Month Period
Following CMI

Patient
Number

Age at
Index

Surgery

Before Surgery
6 Months after

Surgery

Lysholm
Scale

Tegner
Activity

Scale
Lysholm

Scale

Tegner
Activity

Scale

1 24 70 3 100 5
2 36 68 2 95 5
3 42 70 2 98 4
4 50 41 2 82 4

Mean 38 62.25 2.25 93.75 4.5

Figure 1. Collagen meniscus implant (CMI). The semicircular shape
and triangular section are similar to the human meniscus (Bar �
15mm).

Figure 2. Diagram of CMI procedure. (A) Partial medial meniscec-
tomy with preservation of the peripheral portion. (B) CMI suture to the
meniscal stump.
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in ethanol series, specimens were embedded in Epon 812.
They were sectioned to 60-nm-thick ultrathin sections with an
ultramicrotome (RMC MTXL ultramicrotome, Boeckeler In-
struments, Tucson, AZ) fitted with a diamond knife.

The ultrathin sections were collected on copper grids,
stained with uranyl citrate and lead acetate, and observed
with TEM (1010 EX electron microscope, Jeol, Tokyo, Ja-
pan).

Figure 3. Light microscopy of the implant stained with hematoxylin and eosin. (A) The CMI (number
sign) is partially invaded from posterior meniscus tissue (asterisk). A more compact scaffold is evident
(bar � 500 �m). (B) The CMI scaffold is clearly evident (number sign). Connective tissue inside the
lacunae and new vessels (triangles) are evident (bar � 40 �m).
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RESULTS

Clinical and Arthroscopic Observation

No complications occurred in the postoperative period. All
patients returned to activities of daily living by 3 months
and were fully active at 6 months. The Lysholm score and
Tegner activity scale increased in all operated knees during
the 6-month period following CMI (Table I).

At second arthroscopic look, regeneration of meniscal-like
tissue with healing of the implant to the capsule and to the
residual meniscal stump was observed in all knees. Only one

implant showed a small area of fragmentation that did not
required any debridement. There were no signs of synovitis
or joint damage, with intact chondral surfaces of the medial
compartment.

Light Microscopy

Six months after implantation, the multilamellar structure
typical of CMI is less evident owing to tissue invasion
inside the lacunae. The more dense appearance of the
implant might also result from mechanical compaction
caused by compressive forces acting on the knee joint

Figure 4. Scanning electron microscopy of the CMI. (A) On the top surface (triangle) some regular
cristae are interposed with herringbone grooves that are about 70 �m wide. The lateral surface
(number sign) shows lacunae 60–90 �m wide, formed by collagen laminae interconnected by thinner
fibrils (bar � 250 �m). (B) The fibrils of the lacunae wall exhibit a random distribution with diameters
varying from 73 to 439 �m. A 67-nm period (arrows) can be observed (bar � 700 nm).



[Figure 3(A)]. The architecture of the implanted CMI was
preserved and the scaffold was still well recognizable, in
contrast with previous in vivo studies reporting extensive
scaffold resorption at 6 weeks in pigs.18 The lacunae were
filled by connective tissue, where many cells, either spin-
dle-shaped or roundish, were surrounded by newly formed
extracellular matrix and blood vessels [Figure 3(B)]. No
phagocytes or macrophages were observed.

Scanning Electron Microscopy

The CMI is a semicircular scaffold in which three surfaces
are recognizable: upper, lower, and lateral. The upper and
lower surfaces appeared composed of dense connective
tissue in which cristae and grooves could be observed. The
cristae were 500 �m long and appeared in a herringbone

Figure 5. Scanning electron microscopy of the implant. (A) The multilamellar structure of CMI scaffold is
readily recognizable (bar � 100 �m). B) The new collagen fibrils (arrows) are readily recognizable by their
small diameter in contrast with the larger and flattened fibrils of the scaffold (number sign) (bar � 5 �m).

Figure 6. The scaffold fibrils show a multimodal distribution with
diameters ranging from 73 to 439 nm (mean, 234 � 89 nm). The newly
synthesized fibrils demonstrate a broad distribution with diameters
between 74 and 247 nm with a mean of 126 � 32 nm.
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pattern with 80-�m wide grooves [Figure 4(A)]. The lat-
eral surface of CMI contained lacunae, with diameters
from 60 to 90 �m. The lacunae were formed by stratified
connective layers in which smaller (5–10 �m) connective
bundles could be recognized [Figure 4(A)]. At higher
magnification, the walls of the lacunae appeared composed
of a randomly arranged fibrillar network. The fibrils were
tightly packed and their diameters varied from 73 to 439
nm. The collagen fibrils presented the typical 67-nm period
[Figure 4(B)].

In the biopsy specimens, the multilamellar structure of
CMI was still evident, even though the lacunae were less

recognizable in comparison with the preoperative samples
[Figure 5(A)]. The native connective network of the scaf-
fold was clearly distinguishable from the newly synthe-
sized fibrils, owing to the larger and less uniform diame-
ters [Figure 5(B)].

Based upon measurements performed at SEM, the scaf-
fold fibrils showed a great variability in diameter, ranging
from 73 to 439 nm (mean, 234 � 89 nm), with a
multimodal distribution. Conversely, the newly synthe-
sized fibrils showed a broad distribution with diameters
ranging from 74 to 247 nm with a mean of 126 � 32 nm
(Figure 6).

Figure 7. Transmission electron microscopy of the CMI. (A) Empty scaffold lacunae (number sign) are
formed by collagen walls (bar � 2 �m). (B) Collagen fibrils are tightly packed and difficult to resolve
with this technique. Their 67-nm period (arrows) is, however, evident (bar � 500 nm).

813TISSUE-ENGINEERED COLLAGEN MENISCUS



Transmission Electron Microscopy

In the scaffold, no cells or cellular debris were evident inside
the lacunae [Figure 7(A)]. The walls of the lacunae appeared

composed of amorphous material, in which the typical 67-nm
period of collagen fibrils was often recognizable [Figure
7(B)]. After implantation, the lacunae were filled by fibro-
blast-like cells, presenting large nuclei with a poorly con-

Figure 8. Transmission electron microscopy of the implant. (A) Several fibroblast like cells (arrows) with
euchromatic nucleus are present within the lacunae (bar � 5 �m). (B) The cellular cytoplasm shows rough
endoplasmic reticulum, mitochondria, cisternae, and abundant vesicles. Near the cell wall some vesicles
(triangles) are pouring out proteins into the extracellular matrix. The matrix is composed of parallel fibrils of
regular diameters (bar � 450 nm). (C) Rough endoplasmic reticulum is noted in the cell cytoplasm (pointers)
Evident in the extracellular matrix is the typical 67-nm period of collagen fibrils (number sign) The matrix adjacent
to the collagen fibrils appears composed of irregular filamentous material (circles) (bar � 200 nm).
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densed nuclear chromatin. The cells were surrounded by new
collagen matrix that was separated from the native scaffold
by an empty space [Figure 8(A)]. An abundant rough endo-
plasmic reticulum, several mitochondria, cisternae, and nu-
merous vesicles were present inside the cytoplasm. Most of
the vesicles were adjacent to the cytoplasmic membrane;
some of them were pouring out their contents into the extra-
cellular space [Figure 8(B)]. Pseudopodia were also evident,
showing a close relationship with collagen bundles. Similar
to the SEM observation, the newly synthesized fibrils pre-
sented uniform diameters [Figure 8(B)]. At higher magnifi-
cation, filamentous material was visible between collagen
fibrils [Figure 8(C)].

DISCUSSION

The collagen meniscus implant is composed of a three-di-
mensional collagen network, derived from bovine Achilles
tendons and processed to achieve adequate biocompatibility
and shape for human implantation.13–17 In accordance with
previous studies, no adverse events occurred in this series of
patients after CMI. A general improvement in the clinical
status was observed postoperatively, but this trend might also
be related to partial meniscectomy and not only to CMI.
However, a recent report highlighted the effectiveness of
CMI in controlling knee pain with respect to simple menis-
cectomy.14 Even though the followup is too short for dem-
onstrating a chondroprotective role of CMI, there was no
damage to the opposing cartilage surfaces 6 months after
implantation.

On light microscopy, the CMI has lacunae formed by
large, parallel connective laminae that are connected by
smaller fibers.13,15–17 This structure is very similar to the in
vivo conditions, and matrix synthesis can be enhanced by a
porous scaffold. Indeed, research has been mainly directed to
the production of porous meniscus scaffolds, derived not only
from collagen,12–17,19 but also from synthetics, such as poly-
urethanes.20–23

The present findings on biopsies, performed 6 months after
CMI implantation, are consistent with light-microscopy obser-
vations of other authors.13,15,16 The connective framework of the
scaffold is still evident in the biopsy specimens. The invasion of
the lacunae by vessels, fibroblast-like cells and connective tissue
matrix, as well as the absence of phagocytes and macrophages
confirm the biocompatibility of CMI material.

The dense upper and lower surfaces of the scaffold, with
their herringbone cristae, are clearly evident at SEM. Such
arrangement, created by the manufacturing process,15,17 of-
fers sufficient mechanical strength to resist compressive and
shear stresses, and prevents cell migration outside the scaf-
fold in contrast with the porous, multilamellar structure of the
lateral surface and inner transverse sections that are designed
for tissue invasion.

The collagen network of the scaffold is composed of fibrils
of variable diameters. This broad distribution is actually quite
distinctive for tendons and has been reported in a range of

different animals,24,25 whereas the newly synthesized colla-
gen fibrils observed in the 6-month biopsies have more uni-
form diameters and show a tendency to organize in bundles.
This pattern resembles the normal meniscus ultrastructure,26

even though the dimensions of the biopsies do not allow us to
draw conclusions about the general architecture of the colla-
gen network.

TEM observation allowed a more detailed study of tissue
ingrowth inside the lacunae. The cells show an intense met-
abolic activity, demonstrated by the poorly condensed nu-
clear chromatin, the cytoplasmic organuli, and the exocytosis
vesicles. The pseudopodia organize the bundles of collagen
fibrils in a three-dimensional network.27 These features, as
well as the elongated shape, are characteristic of fibroblast-
like cells.28 Nonetheless, these precursor cells are of un-
known origin. Other authors12,14,16 speculate that the cells
come primarily from the synovium, but currently no defini-
tive data are available to confirm the cell source.

The pericellular filamentous material, the mesh-like pat-
tern of the fibrillar network, the presence of fibroblast-like
cells, and the lack of organization in chondrones demonstrate
that the tissue is still undergoing a maturation process.

CONCLUSIONS

CMI is a tissue-engineering technique designed to prevent
degenerative joint changes caused by meniscectomy. Mor-
phological findings of this case series demonstrate that the
collagen scaffold is still evident 6 months after implantation
and does not elicit any inflammatory reaction. Histological
and ultrastructural evidence of tissue ingrowth support the
hypothesis that CMI possesses tissue-conductive properties
for regeneration of meniscus-like tissue. The short followup
of these four patients does not allow us to confirm its clinical
effectiveness in the long term to prevent osteoarthritis. Fur-
ther morphological studies designed to clarify the final evo-
lution of these implants are now under way.
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