53 research outputs found

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    CMB at 2x2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release

    Full text link
    Silk damping of primordial small-scale perturbations in the photon-baryon fluid due to diffusion of photons inevitably creates spectral distortions in the CMB. With the proposed CMB experiment PIXIE it might become possible to measure these distortions and thereby constrain the primordial power spectrum at comoving wavenumbers 50 Mpc^{-1} < k < 10^4 Mpc^{-1}. Since primordial fluctuations in the CMB on these scales are completely erased by Silk damping, these distortions may provide the only way to shed light on otherwise unobservable aspects of inflationary physics. A consistent treatment of the primordial dissipation problem requires going to second order in perturbation theory, while thermalization of these distortions necessitates consideration of second order in Compton scattering energy transfer. Here we give a full 2x2 treatment for the creation and evolution of spectral distortions due to the acoustic dissipation process, consistently including the effect of polarization and photon mixing in the free streaming regime. We show that 1/3 of the total energy (9/4 larger than previous estimates) stored in small-scale temperature perturbations imprints observable spectral distortions, while the remaining 2/3 only raises the average CMB temperature, an effect that is unobservable. At high redshift dissipation is mainly mediated through the quadrupole anisotropies, while after recombination peculiar motions are most important. During recombination the damping of the higher multipoles is also significant. We compute the average distortion for several examples using CosmoTherm, analyzing their dependence on parameters of the primordial power spectrum. For one of the best fit WMAP7 cosmologies, with n_S=1.027 and n_run=-0.034, the cooling of baryonic matter practically compensates the heating from acoustic dissipation in the mu-era. (abridged)Comment: 40 pages, 17 figures, accepted by MNRA

    Dark Matter from Minimal Flavor Violation

    Full text link
    We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splittings among the flavors of dark matter and governs the structure of the couplings between dark matter and ordinary particles, leading to a rich and predictive cosmology and phenomenology. We present an illustrative phenomenological study of an effective theory of a flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider analysis, conclusions unchange

    Foliar water uptake: a common water acquisition strategy for plants of the redwood forest

    Get PDF
    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2–11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials

    Kinetically-Enhanced Anomaly Mediation

    Full text link
    We investigate a modification of anomaly-mediated supersymmetry breaking (AMSB) with an exotic U(1)_x gauge sector that can solve the tachyonic slepton problem of minimal AMSB scenarios. The new U(1)_x multiplet is assumed to couple directly to the source of supersymmetry breaking, but only indirectly to the minimal supersymmetric Standard Model (MSSM) through kinetic mixing with hypercharge. If the MSSM sector is also sequestered from the source of supersymmetry breaking, the contributions to the MSSM soft terms come from both AMSB and the U(1)_x kinetic coupling. We find that this arrangement can give rise to a flavour-universal, phenomenologically viable, and distinctive spectrum of MSSM superpartners. We also investigate the prospects for discovery and the most likely signatures of this scenario at the Large Hadron Collider (LHC).Comment: 29 pages, 10 figures; Added references, corrected ctau plot in Fig. 4, same general conclusion

    An experimental study of low-level laser therapy in rat Achilles tendon injury

    Get PDF
    The aim of this controlled animal study was to investigate the effect of low-level laser therapy (LLLT) administered 30 min after injury to the Achilles tendon. The study animals comprised 16 Sprague Dawley male rats divided in two groups. The right Achilles tendons were injured by blunt trauma using a mini guillotine, and were treated with LLLT or placebo LLLT 30 min later. The injury and LLLT procedures were then repeated 15 hours later on the same tendon. One group received active LLLT (λ = 904 nm, 60 mW mean output power, 0.158 W/cm2 for 50 s, energy 3 J) and the other group received placebo LLLT 23 hours after LLLT. Ultrasonographic images were taken to measure the thickness of the right and left Achilles tendons. Animals were then killed, and all Achilles tendons were tested for ultimate tensile strength (UTS). All analyses were performed by blinded observers. There was a significant increase in tendon thickness in the active LLLT group when compared with the placebo group (p < 0.05) and there were no significant differences between the placebo and uninjured left tendons. There were no significant differences in UTS between laser-treated, placebo-treated and uninjured tendons. Laser irradiation of the Achilles tendon at 0.158 W/cm2 for 50 s (3 J) administered within the first 30 min after blunt trauma, and repeated after 15 h, appears to lead to edema of the tendon measured 23 hours after LLLT. The guillotine blunt trauma model seems suitable for inflicting tendon injury and measuring the effects of treatment on edema by ultrasonography and UTS. More studies are needed to further refine this model

    Planck 2015 results. XIII. Cosmological parameters

    Get PDF
    We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets
    corecore