Models of secluded dark matter offer a variant on the standard WIMP picture
and can modify our expectations for hidden sector phenomenology and detection.
In this work we extend a minimal model of secluded dark matter, comprised of a
U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT.
This provides a technically natural explanation for the hierarchically small
mediator-scale, with hidden-sector confinement generating m_{gamma'}>0.
Furthermore, the thermal history of the universe can differ markedly from the
WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large
number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase
transition at temperatures T << M_{dm} after freeze out. The mediator allows
both the dark matter and the Standard Model to communicate with the CFT, thus
modifying the low-energy phenomenology and cosmic-ray signals from the secluded
sector.Comment: ~50p, 8 figs; v2 JHEP versio