802 research outputs found

    Not enough stellar mass Machos in the Galactic halo

    Get PDF
    We present an update of results from the search for microlensing towards the Large Magellanic Cloud (LMC) by EROS (Experience de Recherche d'Objets Sombres). We have now monitored 25 million stars over three years. Because of the small number of observed microlensing candidates (four), our results are best presented as upper limits on the amount of dark compact objects in the halo of our Galaxy. We discuss critically the candidates and the possible location of the lenses, halo or LMC . We compare our results to those of the MACHO group. Finally, we combine these new results with those from our search towards the Small Magellanic Cloud as well as earlier ones from the EROS1 phase of our survey. The combined data is sensitive to compact objects in the broad mass range 10710 10^{-7} - 10 solar masses. The derived upper limit on the abundance of stellar mass MACHOs rules out such objects as the dominant component of the Galactic halo if their mass is smaller than 2 solar masses.Comment: 7 pages, 4 figures, presented at the XIX International Conference on Neutrino Physics and Astrophysics, Sudbury, Canada, June 200

    Magnitude bias of microlensed sources towards the Large Magellanic Cloud

    Get PDF
    There are lines of evidence suggesting that some of the observed microlensing events in the direction of the Large Magellanic Cloud (LMC) are caused by ordinary star lenses as opposed to dark Machos in the Galactic halo. Efficient lensing by ordinary stars generally requires the presence of one or more additional concentrations of stars along the line of sight to the LMC disk. If such a population behind the LMC disk exists, then the source stars (for lensing by LMC disk objects) will be drawn preferentially from the background population and will show systematic differences from LMC field stars. One such difference is that the (lensed) source stars will be farther away than the average LMC field stars, and this should be reflected in their apparent baseline magnitudes. We focus on red clump stars: these should appear in the color-magnitude diagram at a few tenths of a magnitude fainter than the field red clump. Suggestively, one of the two near-clump confirmed events, MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.Comment: To appear in ApJ Letters. Shortened to match the accepted version, 8 pages plus 1 ps figur

    Microlens Parallax Asymmetries Toward the LMC

    Get PDF
    If the microlensing events now being detected toward the Large Magellanic Cloud (LMC) are due to lenses in the Milky Way halo, then the events should typically have asymmetries of order 1% due to parallax from the reflex motion of the Earth. By contrast, if the lenses are in the LMC, the parallax effects should be negligible. A ground-based search for such parallax asymmetries would therefore clarify the location of the lenses. A modest effort (2 hours per night on a 1 m telescope) could measure 15 parallax asymmetries over 5 years and so marginally discriminate between the halo and the LMC as the source of the lenses. A dedicated 1 m telescope would approximately double the number of measurements and would therefore clearly distinguish between the alternatives. However, compared to satellite parallaxes, the information extracted from ground-based parallaxes is substantially less useful for understanding the nature of the halo lenses (if that is what they are). The backgrounds of asymmetries due to binary-source and binary-lens events are estimated to be approximately 7% and 12% respectively. These complicate the interpretation of detected parallax asymmetries, but not critically.Comment: Submitted to ApJ, 17 pages, including 2 embedded figure

    Quasar Host Environments: The view from Planck

    Full text link
    We measure the far-infrared emission of the general quasar (QSO) population using Planck observations of the Baryon Oscillation Spectroscopic Survey QSO sample. By applying multi-component matched multi-filters to the seven highest Planck frequencies, we extract the amplitudes of dust, synchrotron and thermal Sunyaev-Zeldovich (SZ) signals for nearly 300,000 QSOs over the redshift range 0.1<z<50.1<z<5. We bin these individually low signal-to-noise measurements to obtain the mean emission properties of the QSO population as a function of redshift. The emission is dominated by dust at all redshifts, with a peak at z2z \sim 2, the same location as the peak in the general cosmic star formation rate. Restricting analysis to radio-loud QSOs, we find synchrotron emission with a monochromatic luminosity at 100GHz100\,\rm{GHz} (rest-frame) rising from Lsynch=0\overline{L_{\rm synch}}=0 to 0.2LHz10.2 \, {\rm L_\odot} {\rm Hz}^{-1} between z=0z=0 and 3. The radio-quiet subsample does not show any synchrotron emission, but we detect thermal SZ between z=2.5z=2.5 and 4; no significant SZ emission is seen at lower redshifts. Depending on the supposed mass for the halos hosting the QSOs, this may or may not leave room for heating of the halo gas by feedback from the QSO.Comment: 14 pages, 11 figures, accepted by A&
    corecore