141 research outputs found

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Metals at the surface of last scatter

    Get PDF
    Standard big-bang nucleosynthesis (BBN) predicts only a trace abundance of lithium and no heavier elements, but some alternatives predict a nonzero primordial metallicity. Here we explore whether CMB measurements may set useful constraints to the primordial metallicity and/or whether the standard CMB calculations are robust, within the tolerance of forthcoming CMB maps, to the possibility of primordial metals. Metals would affect the recombination history (and thus CMB power spectra) in three ways: (1) Lyα photons can be removed (and recombination thus accelerated) by photoionizing metals; (2) The Bowen resonance-fluorescence mechanism may degrade Lyβ photons and thus enhance the Lyβ escape probability and speed up recombination; (3) Metals could affect the low-redshift tail of the CMB visibility function by providing additional free electrons. The last two of these provide the strongest CMB signal. However, the effects are detectable in the Planck satellite only if the primordial metal abundance is at least a few hundredths of solar for (2) and a few tenths of solar for (3). We thus conclude that Planck will not be able to improve upon current constraints to primordial metallicity, at the level of a thousandth of solar, from the Lyman-α forest and ultra-metal-poor halo stars, and that the CMB power-spectrum predictions for Planck suffer no uncertainty arising from the possibility that there may be primordial metals

    Flaring of tidally compressed dark-matter clumps

    Full text link
    We explore the physics and observational consequences of tidal compression events (TCEs) of dark-matter clumps (DMCs) by supermassive black holes (SMBHs). Our analytic calculations show that a DMC approaching a SMBH much closer than the tidal radius undergoes significant compression along the axis perpendicular to the orbital plane, shortly after pericenter passage. For DMCs composed of self-annihilating dark-matter particles, we find that the boosted DMC density and velocity dispersion lead to a flaring of the annihilation rate, most pronounced for a velocity- dependent annihilation cross section. If the end products of the annihilation are photons, this results in a gamma-ray flare, detectable (and possibly already detected) by the Fermi telescope for a range of model parameters. If the end products of dark-matter annihilation are relativistic electrons and positrons and the local magnetic field is large enough, TCEs of DMCs can lead to flares of synchrotron radiation. Finally, TCEs of DMCs lead to a burst of gravitational waves, in addition to the ones radiated by the orbital motion alone, and with a different frequency spectrum. These transient phenomena provide interesting new avenues to explore the properties of dark matter.Comment: 11 pages, 6 figures; Minor changes; Version as published in PR
    corecore