12 research outputs found
A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity
The richness of natural images makes the quest for optimal representations in
image processing and computer vision challenging. The latter observation has
not prevented the design of image representations, which trade off between
efficiency and complexity, while achieving accurate rendering of smooth regions
as well as reproducing faithful contours and textures. The most recent ones,
proposed in the past decade, share an hybrid heritage highlighting the
multiscale and oriented nature of edges and patterns in images. This paper
presents a panorama of the aforementioned literature on decompositions in
multiscale, multi-orientation bases or dictionaries. They typically exhibit
redundancy to improve sparsity in the transformed domain and sometimes its
invariance with respect to simple geometric deformations (translation,
rotation). Oriented multiscale dictionaries extend traditional wavelet
processing and may offer rotation invariance. Highly redundant dictionaries
require specific algorithms to simplify the search for an efficient (sparse)
representation. We also discuss the extension of multiscale geometric
decompositions to non-Euclidean domains such as the sphere or arbitrary meshed
surfaces. The etymology of panorama suggests an overview, based on a choice of
partially overlapping "pictures". We hope that this paper will contribute to
the appreciation and apprehension of a stream of current research directions in
image understanding.Comment: 65 pages, 33 figures, 303 reference
An Object-Oriented Approach to Curves and Surfaces
This paper presents a top down approach to the design of an object-oriented framework for curves and surfaces together with its C++ implementation. We start from an abstract class of general differentiable curves and surfaces and in turn refine this design to various parametric representations of curves and surfaces. This design includes all of the standard curve and surface types and provides a powerful and uniform interface for applications. Examples from differential geometry, blending, and scattered data interpolation illustrate the approach