388 research outputs found
Interference between the halves of a double-well trap containing a Bose-Einstein condensate
Interference between the halves of a double-well trap containing a
Bose-Einstein condensate is studied. It is found that when the atoms in the two
wells are initially in the coherent state, the intensity exhibits collapses and
revivals, but it does not for the initial Fock states. Whether the initial
states are in the coherent states or in a Fock states, the fidelity time has
nothing to do with collision. We point out that interference and its fidelity
can be adjusted experimentally by properly preparing the number and initial
states of the system.Comment: 10 pages, 3 figures, accepted by Phy. rev.
Condensate fluctuations in finite Bose-Einstein condensates at finite temperature
A Langevin equation for the complex amplitude of a single-mode Bose-Einstein
condensate is derived. The equation is first formulated phenomenologically,
defining three transport parameters. It is then also derived microscopically.
Expressions for the transport parameters in the form of Green-Kubo formulas are
thereby derived and evaluated for simple trap geometries, a cubic box with
cyclic boundary conditions and an isotropic parabolic trap. The number
fluctuations in the condensate, their correlation time, and the
temperature-dependent collapse-time of the order parameter as well as its
phase-diffusion coefficient are calculated.Comment: 29 pages, Revtex, to appear in Phys.Rev.
Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA
This paper is not subject to U.S. copyright.
The definitive version was published in Sedimentology 53 (2006): 1211-1228, doi:10.1111/j.1365-3091.2006.00809.x.Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.This study was supported by the Coastal and
Marine Geology Program, and the Earthquake
Hazards Program of the U.S. Geological Survey
Superfluid rotation sensor with helical laser trap
The macroscopic quantum states of the dilute bosonic ensemble in helical
laser trap at the temperatures about are considered in the
framework of the Gross-Pitaevskii equation. The helical interference pattern is
composed of the two counter propagating Laguerre-Gaussian optical vortices with
opposite orbital angular momenta and this pattern is driven in
rotation via angular Doppler effect. Macroscopic observables including linear
momentum and angular momentum of the atomic cloud are evaluated explicitly. It
is shown that rotation of reference frame is transformed into translational
motion of the twisted matter wave. The speed of translation equals the group
velocity of twisted wavetrain and alternates with a sign
of the frame angular velocity and helical pattern handedness .
We address detection of this effect using currently accessible laboratory
equipment with emphasis on the difference between quantum and classical fluids.Comment: 8 pages, 3 figures, accepted to publication Journ.Low Temp.Phy
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes
KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models.Kptn−/− mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants.Molecular and structural analysis of Kptn−/− mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1.By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.Genetics of disease, diagnosis and treatmen
- …