4,783 research outputs found

    Design Optimization of a Planar Spiral Inductor Using Space Mapping

    Get PDF
    This paper addresses the implementation of a computationally efficient optimization technique for designing structures simulated in 3D electromagnetic field solvers. A probe of concept is done by the EM-based optimization of a planar spiral inductor for high-power applications. The optimization technique employed is based on space mapping (SM) methods, more specifically on the Broyden-based input space mapping algorithm. Our optimization results confirm the efficiency of the proposed approach

    Surgical Approach to a Large Left Adrenocortical Mass with Associated Tumour Thrombosis of the Left Renal Vein: Preservation of the Ipsilateral Kidney

    Get PDF
    A sixty-years-old male with diagnosis of a left adrenal mass (146 × 99 × 126 mm) with associated tumour thrombosis of the left renal vein with no clear signs of thrombosis of the inferior vena cava was admitted for elective surgery Finally an adrenalectomy and excision of tumour thrombus preserving the ipsilateral kidney was made. Despite of the complex vascular management, this kind of approaches allow to preserve normal renal function in patients with future nephrotoxic treatment like cisplatin

    Design Optimization of a Planar Spiral Inductor Using Space Mapping (poster)

    Get PDF
    This paper addresses the implementation of a computationally efficient optimization technique for designing structures simulated in 3D electromagnetic field solvers. A probe of concept is done by the EM-based optimization of a planar spiral inductor for high-power applications. The optimization technique employed is based on space mapping (SM) methods, more specifically on the Broyden-based input space mapping algorithm. Our optimization results confirm the efficiency of the proposed approach

    Unravelling the removal mechanisms of bacterial and viral surrogates in aerobic granular sludge systems

    Get PDF
    The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.M.L. Barrios-Hernández acknowledges the Technological Institute of Costa Rica for providing the fellowship (Grant Number 007-2014-M) to pursue her PhD programme (2016-2020) at IHE-Delft, the Netherlands. K. Mora-Cabrera acknowledges the Generalitat Valenciana (GRISOLIAP/2017/173) and the European Social Funds (BEFPI/2019/065) for their financial support

    Impact of Sexualized Substance Use and Other Risk Practices on HCV Microelimination in gbMSM Living with HIV: Urgent Need for Targeted Strategies

    Full text link
    In the original publication of the article, the article funding note was incorrectly published, the correct one should read as: This study has been funded by Instituto de Salud Carlos III through the project ‘‘PI18/00583’’ and co-funded by European Regional Development Fund ‘‘A way to make Europe’’. This has been corrected in this paper. © The Author(s) 2022

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore