526 research outputs found

    Transport Mean Free Path for Magneto-Transverse Light Diffusion

    Full text link
    We derive an expression for the transport mean free path \ell^*_\perp associated with magneto-transverse light diffusion for a random collection of Faraday-active Mie scatterers. This expression relates the magneto-transverse diffusion in multiple scattering directly to the magneto-transverse scattering of a single scatterer.Comment: 5 pages, 1 figure, Latex, accepted for publication in Europhysics Letter

    Coherent Backscattering of light in a magnetic field

    Full text link
    This paper describes how coherent backscattering is altered by an external magnetic field. In the theory presented, magneto-optical effects occur inside Mie scatterers embedded in a non-magnetic medium. Unlike previous theories based on point-like scatterers, the decrease of coherent backscattering is obtained in leading order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is a novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.

    Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio

    Full text link
    We study in-plane magnetic tunnel junctions with additional perpendicular polarizer for subnanosecond-current-induced switching memories. The spin-transfer-torque switching dynamics was studied as a function of the cell aspect ratio both experimentally and by numerical simulations using the macrospin model. We show that the anisotropy field plays a significant role in the dynamics, along with the relative amplitude of the two spin-torque contributions. This was confirmed by micromagnetic simulations. Real-time measurements of the reversal were performed with samples of low and high aspect ratio. For low aspect ratios, a precessional motion of the magnetization was observed and the effect of temperature on the precession coherence was studied. For high aspect ratios, we observed magnetization reversals in less than 1 ns for high enough current densities, the final state being controlled by the current direction in the magnetic tunnel junction cell.Comment: 6 pages, 7 figure

    Landau-deGennes Theory of Biaxial Nematics Re-examined

    Full text link
    Recent experiments report that the long looked for thermotropic biaxial nematic phase has been finally detected in some thermotropic liquid crystalline systems. Inspired by these experimental observations we concentrate on some elementary theoretical issues concerned with the classical sixth-order Landau-deGennes free energy expansion in terms of the symmetric and traceless tensor order parameter QαβQ_{\alpha\beta}. In particular, we fully explore the stability of the biaxial nematic phase giving analytical solutions for all distinct classes of the phase diagrams that theory allows. This includes diagrams with triple- and (tri-)critical points and with multiple (reentrant) biaxial- and uniaxial phase transitions. A brief comparison with predictions of existing molecular theories is also given.Comment: 12 pages, 14 figure

    Phase transitions in a ferrofluid at magnetic field induced microphase separation

    Full text link
    In the presence of a magnetic field applied perpendicular to a thin sample layer, a suspension of magnetic colloidal particles (ferrofluid) can form spatially modulated phases with a characteristic length determined by the competition between dipolar forces and short-range forces opposing density variations. We introduce models for thin-film ferrofluids in which magnetization and particle density are viewed as independent variables and in which the non-magnetic properties of the colloidal particles are described either by a lattice-gas entropy or by the Carnahan-Starling free energy. Our description is particularly well suited to the low-particle density regions studied in many experiments. Within mean-field theory, we find isotropic, hexagonal and stripe phases, separated in general by first-order phase boundaries.Comment: 12 pages, RevTex, to appear in PR

    Corpus Callosum Morphology in Capuchin Monkeys Is Influenced by Sex and Handedness

    Get PDF
    Sex differences have been reported in both overall corpus callosum area and its regional subdivisions in humans. Some have suggested this reflects a unique adaptation in humans, as similar sex differences in corpus callosum morphology have not been reported in any other species of primate examined to date. Furthermore, an association between various measurements of corpus callosum morphology and handedness has been found in humans and chimpanzees. In the current study, we report measurements of corpus callosum cross-sectional area from midsagittal MR images collected in vivo from 14 adult capuchin monkeys, 9 of which were also characterized for hand preference on a coordinated bimanual task. Adult females were found to have a significantly larger corpus callosum: brain volume ratio, rostral body, posterior midbody, isthmus, and splenium than adult males. Left-handed individuals had a larger relative overall corpus callosum area than did right-handed individuals. Additionally, a significant sex and handedness interaction was found for anterior midbody, with right-handed males having a significantly smaller area than right-handed females. These results suggest that sex and handedness influences on corpus callosum morphology are not restricted to Homo sapiens

    Laminar degeneration of frontal and temporal cortex in Parkinson disease dementia

    Get PDF
    To investigate cortical laminar degeneration in Parkinson’s disease (PD) with dementia (PDD). Changes in density of α-synuclein-immunoreactive Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG) together with surviving neurons, abnormally enlarged neurons (EN), vacuoles, and glial cell nuclei were measured across cortical laminae of frontal and temporal cortex in fifteen cases of PDD using quantitative methods and polynomial curve-fitting. Most frequently, LB and LN were distributed across all laminae, while LG were distributed in upper cortical laminae. Low densities of EN were present in most cases distributed across all cortical laminae. Densities of vacuoles and glia were greatest in upper and lower cortical laminae, respectively. In most gyri, there were no spatial correlations between the densities of LB, LN, and LG. Cortical degeneration of frontal and temporal lobes in PDD affects all cortical laminae. Laminar distributions may result from the spread of α-synuclein pathology from subcortical regions and subsequent spread via the cortico-cortical pathways. This spread may be a major factor in the development of dementia in PD

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF
    corecore