85 research outputs found

    Stable registration of pathological 3D-OCT scans using retinal vessels

    Get PDF
    We propose a multiple scanner vendor registration method for pathological retinal 3D spectral domain optical coherence tomography volumes based on Myronenko’s Coherent Point Drift and our automated vessel shadow segmentation. Coherent point drift is applied to the segmented retinal vessel point sets used as landmarks to generate the registration parameters required. In contrast to other registration methods, our solution incorporates a landmark detection and extraction method that specifically limits the extraction of false positives and a registration method capable of handling any such noise in the landmark point sets. Our experiments show modified Hausdorff distance is reduced by a minimum of 91% between target and registered vessel point sets with at least 94% of bifurcations correctly overlapping based on ground truth, a significant improvement over current methods

    Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease

    Get PDF
    In macular spectral domain optical coherence tomography (SD-OCT) volumes, detection of the foveal center is required for accurate and reproducible follow-up studies, structure function correlation, and measurement grid positioning. However, disease can cause severe obscuring or deformation of the fovea, thus presenting a major challenge in automated detection. We propose a fully automated fovea detection algorithm to extract the fovea position in SD-OCT volumes of eyes with exudative maculopathy. The fovea is classified into 3 main appearances to both specify the detection algorithm used and reduce computational complexity. Based on foveal type classification, the fovea position is computed based on retinal nerve fiber layer thickness. Mean absolute distance between system and clinical expert annotated fovea positions from a dataset comprised of 240 SD-OCT volumes was 162.3 µm in cystoid macular edema and 262 µm in nAMD. The presented method has cross-vendor functionality, while demonstrating accurate and reliable performance close to typical expert interobserver agreement. The automatically detected fovea positions may be used as landmarks for intra- and cross-patient registration and to create a joint reference frame for extraction of spatiotemporal features in “big data.” Furthermore, reliable analyses of retinal thickness, as well as retinal structure function correlation, may be facilitated

    Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants

    Get PDF
    Most plants are known as C-3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C-4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C-4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C-4 photosynthesis evolved first. Here we report that tobacco, a typical C-3 plant, shows characteristics of C-4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C-4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C-4 photosynthesis in cells around the vascular bundles of stems of C-3 plants might explain why C-4 photosynthesis has evolved independently many times

    Simultaneous Determination of Various Isothiocyanates by RP-LC Following Precolumn Derivatization with Mercaptoethanol

    Get PDF
    Numerous isothiocyanates (ITCs) are poorly soluble in water which causes their precipitation in aqueous mobile phases used in reversed phase liquid chromatography (RP-LC), thus impacting the accuracy of the quantification. By comparing the amounts of ITCs injected and released from the column, losses could be estimated at 5–32% depending on polarities and concentrations. Results could be dramatically improved in terms of separation and quantification using RP-LC with a mercaptoethanol precolumn derivatization aimed at avoiding ITCs precipitation. The cancer chemoprotective allyl-ITC and sulforaphane were found in cabbage extracts at 1.2 and 2.7 μg g−1 fresh weight, respectively

    A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis

    Get PDF
    Ascorbic acid (AA) is an antioxidant fulfilling a multitude of cellular functions. Given its pivotal role in maintaining the rate of cell growth and division in the quiescent centre of the root, it was hypothesized that the AA-deficient Arabidopsis thaliana mutants vtc1-1, vtc2-1, vtc3-1, and vtc4-1 have altered root growth. To test this hypothesis, root development was studied in the wild type and vtc mutants grown on Murashige and Skoog medium. It was discovered, however, that only the vtc1-1 mutant has strongly retarded root growth, while the other vtc mutants exhibit a wild-type root phenotype. It is demonstrated that the short-root phenotype in vtc1-1 is independent of AA deficiency and oxidative stress. Instead, vtc1-1 is conditionally hypersensitive to ammonium (NH4+). To provide new insights into the mechanism of NH4+ sensitivity in vtc1-1, root development, NH4+ content, glutamine synthetase (GS) activity, glutamate dehydrogenase activity, and glutamine content were assessed in wild-type and vtc1-1 mutant plants grown in the presence and absence of high NH4+ and the GS inhibitor MSO. Since VTC1 encodes a GDP-mannose pyrophosphorylase, an enzyme generating GDP-mannose for AA biosynthesis and protein N-glycosylation, it was also tested whether protein N-glycosylation is affected in vtc1-1. Furthermore, since root development requires the action of a variety of hormones, it was investigated whether hormone homeostasis is linked to NH4+ sensitivity in vtc1-1. Our data suggest that NH4+ hypersensitivity in vtc1-1 is caused by disturbed N-glycosylation and that it is associated with auxin and ethylene homeostasis and/or nitric oxide signalling

    Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective

    Full text link

    Numerical investigation of ignition performance of a lean burn combustor at sub-atmospheric conditions

    No full text
    Stringent environmental requirements are pushing the current development of aero gas turbine combustors towards lean combustion concepts with relatively small combustor volume. This approach has a detrimental effect on the high altitude relight capability of an aeronautical engine. But the ability to light up at a specific altitude is one of the certification requirements that an engine has to fulfil. To ensure the relight capability, extensive testing for new combustor developments is needed. These test set-ups are expensive as they have to be conducted at subatmospheric conditions. Thus, the use of a simple tool to evaluate the ignition tendency of a combustor at an early development stage is advantageous. The code SPINTHIR, developed by Cambridge University, is capable of calculating the ignition performance in turbulent spray flames in a simplified approach. It has been previously validated for different types of flames and applications. In order to adjust the code for lean burn combustors, a new function for a better resemblance of the turbulent spray dispersion has been introduced and the high sensitivity towards cell sizes has been balanced by modifying the ignition criteria. Finally, the results of the code have been compared in this work with recently obtained ignition test performed by Rolls-Royce. Thereby, the influence of varying combustor geometries on the lean ignition limit has been tested. In comparison with these tests, the code's results show very good matches which verify the conducted changes and give further credence to the model
    corecore