133 research outputs found

    Editorial: Metallic micronutrient homeostasis in plants

    Get PDF
    Transition elements, such as copper, iron, or zinc, are essential nutrients for plants. They participate in every biological process. However, intracellular metal levels must be maintained within a narrow physiological concentration. Too little, and not enough cofactors are available to the cell; too much, and Fenton-type reactions and mismetallation events will disrupt many cellular processes. As a result, plants have developed complex systems to control metal uptake and to deliver them to all tissues and cells. In this Research Topic, we have collected some of the most recent work furthering our understanding of Metallic Micronutrient Homeostasis in Plants.Fil: Roschzttardtz, Hannetz. Pontificia Universidad Católica de Chile; ChileFil: González Guerrero, Manuel. Universidad Politécnica de Madrid; EspañaFil: Gomez Casati, Diego Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentin

    The Diverse Iron Distribution in Eudicotyledoneae Seeds: From Arabidopsis to Quinoa

    Get PDF
    Seeds accumulate iron during embryo maturation stages of embryogenesis. Using Arabidopsis thaliana as model plant, it has been described that mature embryos accumulate iron within a specific cell layer, the endodermis. This distribution pattern was conserved in most of the analyzed members from Brassicales, with the exception of the basal Vasconcellea pubescens that also showed elevated amounts of iron in cortex cells. To determine whether the V. pubescens iron distribution was indicative of a wider pattern in non-Brassicales Eudicotyledoneae, we studied iron distribution pattern in different embryos belonging to plant species from different Orders from Eudicotyledoneae and one basal from Magnoliidae. The results obtained indicate that iron distribution in A. thaliana embryo is an extreme case of apomorphic character found in Brassicales, not-extensive to the rest of Eudicotyledoneae

    Plant ionomics: from elemental profiling to environmental adaptation

    Get PDF
    Ionomics is a high-throughput elemental profiling approach to study the molecular mechanistic basis underlying mineral nutrient and trace element composition (also known as the ionome) of living organisms. Since the concept of ionomics was first introduced more than 10 years ago, significant progress has been made in the identification of genes and gene networks that control the ionome. In this update, we summarize the progress made in using the ionomics approach over the last decade, including the identification of genes by forward genetics and the study of natural ionomic variation. We further discuss the potential application of ionomics to the investigation of the ecological functions of ionomic alleles in adaptation to the environment

    Iron biofortification in rice: an update on quantitative trait loci and candidate genes

    Get PDF
    ReviewRice is the most versatile model for cereals and also an economically relevant food crop; as a result, it is the most suitable species for molecular characterization of Fe homeostasis and biofortification. Recently there have been significant efforts to dissect genes and quantitative trait loci (QTL) associated with Fe translocation into rice grains; such information is highly useful for Fe biofortification of cereals but very limited in other species, such as maize (Zea mays) and wheat (Triticum aestivum). Given rice’s centrality as a model for Poaceae species, we review the current knowledge on genes playing important roles in Fe transport, accumulation, and distribution in rice grains and QTLs that might explain the variability in Fe concentrations observed in different genotypes. More than 90 Fe QTLs have been identified over the 12 rice chromosomes. From these, 17 were recorded as stable, and 25 harbored Fe-related genes nearby or within the QTL. Among the candidate genes associated with Fe uptake, translocation, and loading into rice grains, we highlight the function of transporters from the YSL and ZIP families; transporters from metal-binding molecules, such as nicotianamine and deoxymugineic acid; vacuolar iron transporters; citrate efflux transporters; and others that were shown to play a role in steps leading to Fe delivery to seeds. Finally, we discuss the application of these QTLs and genes in genomics assisted breeding for fast-tracking Fe biofortification in rice and other cereals in the near futureinfo:eu-repo/semantics/publishedVersio
    • …
    corecore