158 research outputs found
Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers
From the late 1980s onwards, the use of DNA probes to visualise sequences on individual chromosomes (fluorescent in-situ hybridisation - FISH) revolutionised the study of cytogenetics. Following single colour experiments, more fluorochromes were added, culminating in a 24 colour assay that could distinguish all human chromosomes. Interphase cytogenetics (the detection of chromosome copy number in interphase nuclei) soon followed, however 24 colour experiments are hampered for this application as mixing fluorochromes to produce secondary colours produces images that are not easily distinguishable from overlapping signals. This study reports the development and use of a novel protocol, new fast hybridising FISH probes, and a bespoke image capture system for the assessment of chromosome copy number in interphase nuclei. The multicolour probe sets can be used individually or in sequential hybridisation layers to assess ploidy of all 24 human chromosomes in the same nucleus. Applications of this technique are in the investigation of chromosome copy number and the assessment of nuclear organisation for a range of different cell types including human sperm, cancer cells and preimplantation embryos
Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma.
Funder: Herchel Smith FundFunder: St John’s College CambridgeFunder: Centre for Misfolding Diseases, CambridgeFunder: Swiss FCS and the Forschungskredit of the University of ZurichFunder: Frances and Augustus Newman FoundationFunder: BBRSCFunder: NOMIS FoundationThe clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations
Single-cell chromosomal imbalances detection by array CGH
Genomic imbalances are a major cause of constitutional and acquired disorders. Therefore, aneuploidy screening has become the cornerstone of preimplantation, prenatal and postnatal genetic diagnosis, as well as a routine aspect of the diagnostic workup of many acquired disorders. Recently, array comparative genomic hybridization (array CGH) has been introduced as a rapid and high-resolution method for the detection of both benign and disease-causing genomic copy-number variations. Until now, array CGH has been performed using a significant quantity of DNA derived from a pool of cells. Here, we present an array CGH method that accurately detects chromosomal imbalances from a single lymphoblast, fibroblast and blastomere within a single day. Trisomy 13, 18, 21 and monosomy X, as well as normal ploidy levels of all other chromosomes, were accurately determined from single fibroblasts. Moreover, we showed that a segmental deletion as small as 34 Mb could be detected. Finally, we demonstrated the possibility to detect aneuploidies in single blastomeres derived from preimplantation embryos. This technique offers new possibilities for genetic analysis of single cells in general and opens the route towards aneuploidy screening and detection of unbalanced translocations in preimplantation embryos in particular
DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism
Motivation: The understanding of the genetic determinants of complex disease is undergoing a paradigm shift. Genetic heterogeneity of rare mutations with deleterious effects is more commonly being viewed as a major component of disease. Autism is an excellent example where research is active in identifying matches between the phenotypic and genomic heterogeneities. A considerable portion of autism appears to be correlated with copy number variation, which is not directly probed by single nucleotide polymorphism (SNP) array or sequencing technologies. Identifying the genetic heterogeneity of small deletions remains a major unresolved computational problem partly due to the inability of algorithms to detect them
A comparison of genomic copy number calls by Partek Genomics Suite, Genotyping Console and Birdsuite algorithms to quantitative PCR
<p>Abstract</p> <p>Background</p> <p>Copy number variants are >1 kb genomic amplifications or deletions that can be identified using array platforms. However, arrays produce substantial background noise that contributes to high false discovery rates of variants. We hypothesized that quantitative PCR could finitely determine copy number and assess the validity of calling algorithms.</p> <p>Results</p> <p>Using data from 29 Affymetrix SNP 6.0 arrays, we determined copy numbers using three programs: Partek Genomics Suite, Affymetrix Genotyping Console 2.0 and Birdsuite. We compared array calls at 25 chromosomal regions to those determined by qPCR and found nearly identical calls in regions of copy number 2. Conversely, agreement differed in regions called variant by at least one method. The highest overall agreement in calls, 91%, was between Birdsuite and quantitative PCR. Partek Genomics Suite calls agreed with quantitative PCR 76% of the time while the agreement of Affymetrix Genotyping Console 2.0 with quantitative PCR was 79%.</p> <p>Conclusions</p> <p>In 38 independent samples, 96% of Birdsuite calls agreed with quantitative PCR. Analysis of three copy number calling programs and quantitative PCR showed Birdsuite to have the greatest agreement with quantitative PCR.</p
Genome-wide Copy Number Profiling on High-density Bacterial Artificial Chromosomes, Single-nucleotide Polymorphisms, and Oligonucleotide Microarrays: A Platform Comparison based on Statistical Power Analysis
Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a higher resolution have resulted in the generation of additional microarray platforms encompassing larger numbers of shorter DNA targets (oligonucleotides). Here, we present a novel method to estimate the ability of a microarray to detect genomic copy-number variations of different sizes and types (i.e. deletions or duplications). We applied our method, which is based on statistical power analysis, to four widely used high-density genomic microarray platforms. By doing so, we found that the high-density oligonucleotide platforms are superior to the BAC platform for the genome-wide detection of copy-number variations smaller than 1 Mb. The capacity to reliably detect single copy-number variations below 100 kb, however, appeared to be limited for all platforms tested. In addition, our analysis revealed an unexpected platform-dependent difference in sensitivity to detect a single copy-number loss and a single copy-number gain. These analyses provide a first objective insight into the true capacities and limitations of different genomic microarrays to detect and define DNA copy-number variations
Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens
The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material
The urgent need to recover MHC class I in cancers for effective immunotherapy
We would like to thank Dr M Bernal who has helped us in preparing the figure for the manuscript. This work was supported by grants co-financed by FEDER funds (EU) from the Instituto de Salud Carlos III (CP03/0111, PI12/02031, PI 08/1265, PI 11/01022, PI11/01386, PI14/01978, PI15/00528, RETIC RD 06/020, RD09/0076/00165, PT13/0010/0039), Junta de Andalucia in Spain (Group CTS-143, and CTS-695, CTS-3952, CVI-4740 and PI 09/0382 grant), Worldwide Cancer Research 15-1166 grant, and by Dutch Cancer Society (UL 2010-4785, TvH).Immune escape strategies aimed to avoid T-cell recognition, including the loss of tumor MHC class I expression, are commonly found in malignant cells. Tumor immune escape has proven to have a negative effect on the clinical outcome of cancer immunotherapy, including treatment with antibodies blocking immune checkpoint molecules. Hence, there is an urgent need to develop novel approaches to overcome tumor immune evasion. MHC class I antigen presentation is often affected in human cancers and the capacity to induce upregulation of MHC class I cell surface expression is a critical step in the induction of tumor rejection. This review focuses on characterization of rejection, escape, and dormant profiles of tumors and its microenvironment with a special emphasis on the tumor MHC class I expression. We also discuss possible approaches to recover MHC class I expression on tumor cells harboring reversible/‘soft’ or irreversible/‘hard’ genetic lesions. Such MHC class I recovery approaches might well synergize with complementary forms of immunotherapy.FEDER funds (EU) from the Instituto de Salud Carlos III
CP03/0111
PI12/02031
PI 08/1265
PI 11/01022
PI11/01386
PI14/01978
PI15/00528
RETIC RD 06/020
RD09/0076/00165
PT13/0010/0039Junta de Andalucía
CTS-143
CTS-695
CTS-3952
CVI-4740
PI 09/0382Worldwide Cancer Research
15-1166KWF Kankerbestrijding
UL 2010-478
The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer.
Purpose: Quantifying chromosomal instability (CIN) has both prognostic and predictive clinical utility in breast cancer. In
order to establish a robust and clinically applicable gene expression-based measure of CIN, we assessed the ability of four
qPCR quantified genes selected from the 70-gene Chromosomal Instability (CIN70) expression signature to stratify outcome
in patients with grade 2 breast cancer.
Methods: AURKA, FOXM1, TOP2A and TPX2 (CIN4), were selected from the CIN70 signature due to their high level of
correlation with histological grade and mean CIN70 signature expression in silico. We assessed the ability of CIN4 to stratify
outcome in an independent cohort of patients diagnosed between 1999 and 2002. 185 formalin-fixed, paraffin-embedded
(FFPE) samples were included in the qPCR measurement of CIN4 expression. In parallel, ploidy status of tumors was assessed
by flow cytometry. We investigated whether the categorical CIN4 score derived from the CIN4 signature was correlated with
recurrence-free survival (RFS) and ploidy status in this cohort.
Results: We observed a significant association of tumor proliferation, defined by Ki67 and mitotic index (MI), with both CIN4
expression and aneuploidy. The CIN4 score stratified grade 2 carcinomas into good and poor prognostic cohorts (mean RFS:
83.864.9 and 69.4 +- 8.2 months, respectively, p = 0.016) and its predictive power was confirmed by multivariate analysis
outperforming MI and Ki67 expression.
Conclusions: The first clinically applicable qPCR derived measure of tumor aneuploidy from FFPE tissue, stratifies grade 2
tumors into good and poor prognosis groups
- …