374 research outputs found

    European climate response to tropical volcanic eruptions over the last half millennium

    Get PDF
    We analyse the winter and summer climatic signal following 15 major tropical volcanic eruptions over the last half millennium based on multi-proxy reconstructions for Europe. During the first and second post-eruption years we find significant continental scale summer cooling and somewhat drier conditions over Central Europe. In the Northern Hemispheric winter the volcanic forcing induces an atmospheric circulation response that significantly follows a positive NAO state connected with a significant overall warm anomaly and wetter conditions over Northern Europe. Our findings compare well with GCM studies as well as observational studies, which mainly cover the substantially shorter instrumental period and thus include a limited set of major eruptions

    Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries

    Get PDF
    We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901-1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scale

    Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium

    Get PDF
    Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleo-climate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5-PMIP3 (Coupled Model Intercomparison Project Phase 5-Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change

    Identifying crop variants with high resistant starch content to maintain healthy glucose homeostasis

    Get PDF
    Identifying dietary tools that prevent disordered insulin secretion from pancreatic ÎČ‐cells is an attractive strategy to combat the increasing prevalence of type 2 diabetes. Dietary resistant starch has been linked to improvements in the function of ÎČ‐cells, possibly via increased colonic fermentation and production of short‐chain fatty acids (SCFAs). Increasing the resistant starch content of commonly consumed foods could therefore maintain glucose homeostasis at the population level. As part of Biotechnology and Biological Sciences Research Council (BBSRC) Diet and Health Research Industry Club (DRINC) initiative, variants of Pisum sativum L. (pea) are being investigated to identify the features of pea starch that make it resistant to digestion and available for colonic fermentation and SCFA production. Parallel in vitro and in vivo studies are being conducted using both whole pea seeds and pea flour to facilitate a better understanding of how cells in the pea cotyledons are affected by processing and, in turn, how this influences starch digestibility. Trials in human volunteers are being used to monitor a full spectrum of short‐ and long‐term physiological responses relevant to pancreatic ÎČ‐cell function and glucose homeostasis. This project is providing new insights into variants of crops that are associated with the specific types of resistant starch that provide the best protection against defects in insulin secretion and function

    Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2022

    Get PDF
    The current drought conditions across the Parana-La Plata Basin (LPB) in Brazil-Argentina have been the worst since 1944. While this area is characterized by a rainy season with a peak from October to April, the hydrological year 2020-2021 was very deficient in rainfall, and the situation extended into the 2021-2022 hydrological year. Below-normal rainfall was dominant in south-eastern Brazil, northern Argentina, Paraguay, and Uruguay, suggesting a late onset and weaker South American Monsoon and the continuation of drier conditions since 2021. In fact, in 2021 Brazilian south and south-east regions faced their worst droughts in nine decades, raising the spectre of possible power rationing given the grid dependence on hydroelectric plants. The ParanĂĄ-La Plata Basin drought induced damages to agriculture and reduced crop production, including soybeans and maize, with effects on global crop markets. The drought situation continued in 2022 in the Pantanal region. Dry meteorological conditions are still present in the region at the end of September 2022 with below-average precipitation anomalies. Soil moisture anomaly and vegetation conditions are worst in the lower part of the La Plata Basin, in the southern regions. Conversely, upper and central part of the basin show partial and temporary recovery

    Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization

    Get PDF
    Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions

    Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010

    Get PDF
    When attempting to estimate the impacts of future climate change it is important to reflect on information gathered during the past. Understanding historical trends may also aid in the assessment of likely future agricultural and horticultural changes. The timing of agricultural activities, such as grape harvest dates, is known to be influenced by climate and weather. However, fewer studies have been carried out on grapevine yield and quality. In this paper an analysis is undertaken of long-term data from the period 1805-2010 on grapevine yield (hl/ha) and must sugar content (°Oe) and their relation to temperature. Monthly mean temperatures were obtained for the same time period. Multiple regression was used to relate the viticulture variables to temperature, and long-term trends were calculated. Overall, the observed trends over time are compatible with results from other long term studies. The findings confirm a relationship between yield, must sugar content and temperature data; increased temperatures were associated with higher yields and higher must sugar content. However, the potential increase in yield is currently limited by legislation, while must sugar content is likely to further increase with rising temperatures

    Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years

    Get PDF
    The North Atlantic experiences climate variability on multidecadal scales, which is sometimes referred to as Atlantic multidecadal variability. However, the relative contributions of external forcing such as changes in solar irradiance or volcanic activity and internal dynamics to these variations are unclear. Here we provide evidence for persistent summer Atlantic multidecadal variability from AD 800 to 2010 using a network of annually resolved terrestrial proxy records from the circum-North Atlantic region. We find that large volcanic eruptions and solar irradiance minima induce cool phases of Atlantic multidecadal variability and collectively explain about 30% of the variance in the reconstruction on timescales greater than 30 years. We are then able to isolate the internally generated component of Atlantic multidecadal variability, which we define as the Atlantic multidecadal oscillation. We find that the Atlantic multidecadal oscillation is the largest contributor to Atlantic multidecadal variability over the past 1,200 years. We also identify coherence between the Atlantic multidecadal oscillation and Northern Hemisphere temperature variations, leading us to conclude that the apparent link between Atlantic multidecadal variability and regional to hemispheric climate does not arise solely from a common response to external drivers, and may instead reflect dynamic processes
    • 

    corecore