106 research outputs found
A estrutura da floresta de várzea do baixo Purus e sua relação com a duração da inundação
Forests occuring along the floodplains of the major rivers in the Amazon
region harbour a diverse tree community. Tree species in these forests cope
with a yearly seasonal flooding which can last up to eight months. It is
therefore expected that environmental conditions limit specie occurrences. We
describe the distribution pattern of α diversity of trees in relation to the
environmental gradient of inundation. We also evaluated the influence of
environment and space in the species composition among sites in the forest
landscape of alluvial floodplain of the lower Purus river, Amazonas, Brazil.
Using data from botanical inventories of trees ≥ 10 cm DBH, 16 plots of 0.315
ha, we sampled 2 951 trees in 304 species and obtained a Fisher diversity (α) of
85.05. The diversity of trees is inversely related to flood depth. The dominance
of each plot directly increases with flood depth. The floristic dissimilarity is
high and variation in flood depth and geographic distance between pairs of
plots explain more than half of the variation in floristic composition. The most
common species were not associated with a specific habitat in the floodplain.
Along the gradient of inundation the tree community shows a decreasing
number of species together with species replacement. The study of the
distribution pattern of diversity along gradients of flooding is necessary for
understanding the structure and maintenance of flooded forests in Amazonia.Nas planícies de inundação dos grandes rios da região Amazônica ocorrem florestas
aluviais, ricas em espécies de árvores tolerantes a períodos de alagamento de até oito
meses a cada ano. Utilizando dados de inventários botânicos com árvores ≥ 10 cm
DAP, em 16 parcelas de 0,315 ha, descrevemos o padrão de distribuição da
diversidade α de árvores em relação ao gradiente ambiental de profundidade de
inundação. Também avaliamos a influência do ambiente e do espaço geográfico na
variação da composição de espécies entre locais das florestas aluviais na paisagem de
várzea do baixo rio Purus, Amazonas. Amostramos 2 951 árvores de 304 espécies e
obtivemos como diversidade α de Fisher um valor de 85.05. A diversidade de árvores
é relacionada inversamente com o aumento da profundidade de inundação. A
dominância em cada parcela aumenta diretamente com a profundidade de inundação.
A dissimilaridade florística é alta e mais da metade da variação na composição
floristica é explicada pela variação na profundidade de inundação e na distância
geográfica entre os pares de parcelas. A maioria das espécies comuns não esteve
associada a um habitat espécifico na várzea. Ao longo do gradiente de profundidade
de inundação, além de ocorrer redução no número de espécies também ocorre a
substituição das espécies que participam da comunidade. O estudo do padrão de
distribuição da diversidade ao longo de gradientes de inundação é necessário para o
conhecimento da estruturação e para manutenção das espécies em florestas alagáveis
na Amazônia
A floristic survey of angiosperm species occurring at three landscapes of the Central Amazon várzea, Brazil
The Amazonian floodplains harbor highly diverse wetland forests, with angiosperms adapted to survive extreme floods and droughts. About 14% of the Amazon Basin is covered by floodplains, which are fundamental to river productivity, biogeochemical cycling and trophic flow, and have been subject to human occupation since Pre-Colombian times. The botanical knowledge about these forests is still incomplete, and current forest degradation rates are much higher than the rate of new botanical surveys. Herein we report the results of three years of botanical surveys in floodplain forests of the Central Amazon. This checklist contains 432 tree species comprising 193 genera and 57 families. The most represented families are Fabaceae, Myrtaceae, Lauraceae, Sapotaceae, Annonaceae, and Moraceae representing 53% of the identified species. This checklist also documents the occurrence of approximately 236 species that have been rarely recorded as occurring in white-water floodplain forests
The tree species pool of Amazonian wetland forests: Which species can assemble in periodically waterlogged habitats?
We determined the filtered tree species pool of Amazonian wetland forests, based on confirmed occurrence records, to better understand how tree diversity in wetland environments compares to tree diversity in the entire Amazon region. The tree species pool was determined using data from two main sources: 1) a compilation of published tree species lists plus one unpublished list of our own, derived from tree plot inventories and floristic surveys; 2) queries on botanical collections that include Amazonian flora, curated by herbaria and available through the SpeciesLink digital biodiversity database. We applied taxonomic name resolution and determined sample-based species accumulation curves for both datasets, to estimate sampling effort and predict the expected species richness using Chao’s analytical estimators. We report a total of 3 615 valid tree species occurring in Amazonian wetland forests. After surveying almost 70 years of research efforts to inventory the diversity of Amazonian wetland trees, we found that 74% these records were registered in published species lists (2 688 tree species). Tree species richness estimates predicted from either single dataset underestimated the total pooled species richness recorded as occurring in Amazonian wetlands, with only 41% of the species shared by both datasets. The filtered tree species pool of Amazonian wetland forests comprises 53% of the 6 727 tree species taxonomically confirmed for the Amazonian tree flora to date. This large proportion is likely to be the result of significant species interchange among forest habitats within the Amazon region, as well as in situ speciation processes due to strong ecological filtering. The provided tree species pool raises the number of tree species previously reported as occurring in Amazonian wetlands by a factor of 3.2
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
The biogeography of the Amazonian tree flora
We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions. A broader-scale view of species turnover was obtained by interpolating the relative tree species abundances over Amazonia into 47,441 0.1-degree grid cells. Two main dimensions of spatial change in tree species composition were identified. The first was a gradient between western Amazonia at the Andean forelands (with young geology and relatively nutrient-rich soils) and central–eastern Amazonia associated with the Guiana and Brazilian Shields (with more ancient geology and poor soils). The second gradient was between the wet forests of the northwest and the drier forests in southern Amazonia. Isolines linking cells of similar composition crossed major Amazonian rivers, suggesting that tree species distributions are not limited by rivers. Even though some areas of relatively sharp species turnover were identified, mostly the tree species composition changed gradually over large extents, which does not support delimiting clear discrete biogeographic regions within Amazonia
Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
Unidad de excelencia María de Maeztu CEX2019-000940-MAim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
Estimating the global conservation status of more than 15,000 Amazonian tree species
Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century
An estimate of the number of tropical tree species
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa
- …