10 research outputs found

    Systemic amyloidosis and pneumatosis of bladder wall

    Get PDF
    A 72-year-old woman was admitted to our Department for syncopes, diarrhoea, and weight loss. We suspected the diagnosis of systemic amyloidosis after the detection of macroglossia and periorbital purpura, despite the biopsy of the previous year, that resulted negative for amyloid substance. We confirmed the diagnosis after the histological evidence of deposits of amyloid in bone marrow and the clinical evidence of pneumatosis of bladder wall. Chemotherapy improved only temporarily clinical condition

    Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

    Get PDF
    The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    Transmission of Light in Deep Sea Water at the Site of the ANTARES Neutrino Telescope

    No full text
    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length;,ab, and an effective scattering length lambda(sct)(eff). The values for blue (UV) light are found to be lambda(abs) similar or equal to 60(26) m, lambda(sct)(eff similar or equal to) 265(122) m, with significant (similar to15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented

    Track Reconstruction with Cosmic Ray Data at the Tracker Integration Facility

    No full text
    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15\,\% of the final silicon strip detector, and over 4.7~million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses

    Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

    Get PDF
    We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10(-8). For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711-6830, the Crab pulsar, and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Get PDF
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from 108-10^{-8} to 10910^{-9} Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0h_0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are 1.1×1025{\sim}1.1\times10^{-25} at 95% confidence-level. The minimum upper limit of 1.10×10251.10\times10^{-25} is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals
    corecore