27 research outputs found

    Multi-Domain Cognitive Assessment of Male Mice Shows Space Radiation Is Not Harmful to High-Level Cognition and Actually Improves Pattern Separation

    Get PDF
    Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition

    Structure-Activity Studies Of 7-Heteroaryl-3-Azabicyclo[3.3.1]Non-6-Enes: A Novel Class Of Highly Potent Nicotinic Receptor Ligands

    Get PDF
    The potential for nicotinic ligands with affinity for the α4β2 or α7 subtypes to treat such diverse diseases as nicotine addiction, neuropathic pain, and neurodegenerative and cognitive disorders has been exhibited clinically for several compounds while preclinical activity in relevant in vivo models has been demonstrated for many more. For several therapeutic programs, we sought nicotinic ligands with various combinations of affinity and function across both subtypes, with an emphasis on dual α4β2-α7 ligands, to explore the possibility of synergistic effects. We report here the structure-activity relationships (SAR) for a novel series of 7-heteroaryl-3-azabicyclo[3.3.1]non-6-enes and characterize many of the analogues for activity at multiple nicotinic subtypes. © 2012 American Chemical Society

    Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions

    Get PDF
    Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion

    Biochemical Properties of Highly Neuroinvasive Prion Strains

    Get PDF
    Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Soluble to insoluble PrP ratio varies depending on the prion strain.

    No full text
    <p>(A) Brain homogenate was ultracentrifuged, and the supernatant and pellet fractions were subjected to SDS-PAGE and immunoblotting for PrP. The strongly neuroinvasive strain 22 L has significantly higher levels of insoluble PrP as compared to the weakly neuroinvasive 87 V. (B) Plot of the percentage of insoluble PrP. S = supernatant, P = pellet. ** indicates a P value of <0.001 for 22 L as compared with 87 V.</p

    Characterization of prion phenotypes in mice infected with different prion strains.

    No full text
    <p>(A) Survival curves of <i>Tg</i>a20 and WT mice IC inoculated with prions indicate that strains induced terminal clinical disease after short (blue) or long (red) incubation periods. P value is derived from a log-rank test. (B) Representative brain sections immunolabelled for PrP show the typical large, dense plaques of mCWD and 87 V and the diffuse patchy aggregates and small plaques of 22 L, ME7, and RML. Only the mCWD and 87 V plaques stained with Congo red. Scale bars = 100 µm (PrP) and 50 µm (Congo red). (C) Ultrastructure of the plaques from mCWD and RML show long fibrils in the mCWD-infected brain (arrow). No fibrils were seen in the RML-infected brain, although dead cells were observed.</p

    Thermal stability of strongly and weakly neuroinvasive prion strains.

    No full text
    <p>(A) PK-digested brain samples were subjected to increasing temperatures followed by SDS-PAGE. (B) Monomers were quantified by band intensity analysis, plotted against temperature, and fitted to a sigmoidal function. The PrP signal measured at 99°C was considered as total PrP<sup>Sc</sup> (100%). The temperature required for 50% PrP<sup>Sc</sup> disassociation into monomers is lower for the more neuroinvasive prion strains (22 L, ME7, RML). A faint band at 37°C may represent residual PrP<sup>C</sup> and was not included in the signal quantification. Values represent mean ± standard error.</p
    corecore