476 research outputs found

    Social Comparison Information Influences Intentions to Reduce Single-Use Plastic Water Bottle Consumption

    Get PDF
    Single-use plastic consumption is at an all-time high and threatens environmental and human health. College campuses in particular serve as a hub for single-use plastics due to their convenience for students on the go. The present research tests whether social comparison information can influence self-perceptions of single-use plastic consumption and motivate behavior change within the college campus environment. In a controlled experiment, we measured college students\u27 existing plastic water bottle usage and gave them false feedback about their behaviors and relative standing to their classmates: participants in comparison conditions learned they were either above or below average in their plastic water bottle sustainability behaviors. Results indicated that (relative to a no-comparison control), being above average at water bottle sustainability led students to be more satisfied with their sustainability efforts. However, either kind of comparison information (i.e., being above or below average) led to greater behavioral intentions to reduce single-use plastic water bottle consumption in the future. This study highlights how comparison information can be used to motivate sustainable behavior change with regards to single-use plastics

    Heterogeneity in Surface Sensing Suggests a Division of Labor in Pseudomonas aeruginosa Populations

    Get PDF
    The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration

    Quenching a Weyl-Kondo semimetal by magnetic field

    Full text link
    With the advent of topology in electronic materials the number of predicted quantum phases has literally exploded. Most of them, however, still await firm experimental identification. In strongly correlated electron systems, scanning their low-temperature phase diagrams by varying a nonthermal control parameter has been instrumental in delineating phases defined by a Landau order parameter. Here we show that this approach is versatile also for strongly correlated topological phases. We use Hall effect measurements to probe how the time reversal symmetry invariant Weyl-Kondo semimetal Ce3_3Bi4_4Pd3_3 transforms under magnetic-field tuning. We detect an intriguing two-stage transition, which we associate with an annihilation of the Weyl nodes, making the system more insulating, and a consecutive transition to a heavy fermion metal phase. We expect our work to stimulate tuning studies in related systems, thereby advancing the much needed identification of organizing principles for strongly correlated electronic topology.Comment: 4 figures, 19 page

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at √s = 13 TeV

    Get PDF

    Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer

    Get PDF
    The process pp -> pl(+)l(-)p(()*()), with l(+)l(-) a muon or an electron pair produced at midrapidity with mass larger than 110 GeV, has been observed for the first time at the LHC in pp collisions at root s = 13 TeV. One of the two scattered protons is measured in the CMS-TOTEM precision proton spectrometer (CT-PPS), which operated for the first time in 2016. The second proton either remains intact or is excited and then dissociates into a low-mass state p*, which is undetected. The measurement is based on an integrated luminosity of 9.4 fb(-1) collected during standard, high-luminosity LHC operation. A total of 12 mu(+)/mu(-) and 8 e(+)e(-) pairs with m(l(+)l(-)) > 110 GeV, and matching forward proton kinematics, are observed, with expected backgrounds of 1.49 +/- 0.07 (stat) +/- 0.53 (syst) and 2.36 +/- 0.09 (stat) +/- 0.47(syst), respectively. This corresponds to an excess of more than five standard deviations over the expected background. The present result constitutes the first observation of proton-tagged gamma gamma collisions at the electroweak scale. This measurement also demonstrates that CT-PPS performs according to the design specifications.Peer reviewe
    corecore