304 research outputs found

    Surveying activated sludge changes during acclimation with artificial wastewater

    Get PDF
    Many processes in the chemical and pharmaceutical industries generate wastewater containing organic toxic compounds and other kinds of xenobiotics. Usually, biological treatments are used to degrade a great quantity of these substances. However, most of the time, the microorganisms are not adapted and the treatment can be blocked. Therefore, the first step to make a continuous reactor operative is the acclimation, i.e., the adaptation of the microorganisms to a specific substrate. During this particular step of the process there is a selection and a multiplication of specialized microorganisms and physiological transformations can occur in their metabolic system. Furthermore, combining image processing techniques have already been successfully used to elucidate the activated sludge morphological changes for both aggregated and filamentous bacteria contents, during such processes. The experimental set-up is composed of an aerated reactor and a clarifier. The sludge is recycled from the clarifier by a peristaltic pump. The complete mixing inside the reactor is guaranteed by the diffusion of air from its bottom. The reactor was inoculated with biomass collected from a wastewater treatment plant and fed with an artificial wastewater based on meat extract. During acclimation, chemical parameters were measured in the influent, reactor and effluent, in order to verify the stability of the process. To complete the evaluation of the process, microscopy acquisition and image processing and analysis techniques were performed for aggregates and filamentous bacteria characterization for bright field, Gram and poly-ÎČ-hydroxybutyrate (PHB) staining images. The information extracted from those images allowed for aggregates and filamentous bacteria contents inspection, identification of PHB storing microorganisms and, gram-positive and gram-negative filamentous bacteria recognition. Figure 1 presents activated sludge samples at the beginning and at the end of the acclimation phase. It was found in this study that biomass changes during the acclimation phase could be effectively monitored, combining image analysis information and chemical parameters

    Gemcitabine and oxaliplatin (GEMOX) in gemcitabine refractory advanced pancreatic adenocarcinoma: a phase II study

    Get PDF
    Gemcitabine and oxaliplatin (GEMOX) are active as first-line therapy against advanced pancreatic cancer. This study aims to evaluate the activity and tolerability of this combination in patients refractory to standard gemcitabine (GEM). A total of 33 patients (median age of 57) were included with locally advanced and metastatic evaluable diseases, who had progressed during or following GEM therapy. The GEMOX regimen consisted of 1000 mg m−2 of GEM at a 100-min infusion on day 1, followed on day 2 by 100 mg m−2 of oxaliplatin at a 2-h infusion; a cycle that was given every 2 weeks. All patients received at least one cycle of GEMOX (median 5; range 1–29). Response by 31 evaluable patients was as follows: PR: 7/31(22.6%), s.d. â©Ÿ8 weeks: 11/31(35.5%), s.d. <8 weeks: 1/31(3.2%), PD: 12/31(38.7%). Median duration of response and TTP were 4.5 and 4.2 months, respectively. Median survival was 6 months (range 0.5–21). Clinical benefit response was observed in 17/31 patients (54.8%). Grade III/IV non-neurologic toxicities occurred in 12/33 patients (36.3%), and grade I, II, and III neuropathy in 17(51%), 3(9%), and 4(12%) patients, respectively. GEMOX is a well-tolerated, active regimen that may provide a benefit to patients with advanced pancreatic cancer after progression following standard gemcitabine treatment

    CHIMPS: the <sup>13</sup>CO/C<sup>18</sup>O (<i>J</i> = 3 → 2) Heterodyne Inner Milky Way Plane Survey

    Get PDF
    We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≀ 0.5° and 28° â‰Č l â‰Č 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≀20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations

    The spine of the swan: A Herschel study of the DR21 ridge and filaments in Cygnus X

    Get PDF
    In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities larger than 1e23/cm^2 over a region of 2.3 pc^2. It shows substructured column density profiles and branching into two major filaments in the north. The masses in the studied filaments range between 130 and 1400 Msun whereas the mass in the ridge is 15000 Msun. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These cores formed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south.Comment: 8 pages, 5 figures, accepted for publication as a Letter in Astronomy and Astrophysic

    Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer

    Get PDF
    In pancreatic cancer ( PC) accurate determination of treatment response by imaging often remains difficult. Various efforts have been undertaken to investigate new factors which may serve as more appropriate surrogate parameters of treatment efficacy. This review focuses on the role of carbohydrate antigen 19- 9 ( CA 19- 9) as a prognostic tumor marker in PC and summarizes its contribution to monitoring treatment efficacy. We undertook a Medline/ PubMed literature search to identify relevant trials that had analyzed the prognostic impact of CA 19- 9 in patients treated with surgery, chemoradiotherapy and chemotherapy for PC. Additionally, relevant abstract publications from scientific meetings were included. In advanced PC, pretreatment CA 19- 9 levels have a prognostic impact regarding overall survival. Also a CA 19- 9 decline under chemotherapy can provide prognostic information for median survival. A 20% reduction of CA 19- 9 baseline levels within the first 8 weeks of chemotherapy appears to be sufficient to define a prognostic relevant subgroup of patients ('CA 19- 9 responder'). It still remains to be defined whether the CA 19- 9 response is a more reliable method for evaluating treatment efficacy compared to conventional imaging. Copyright (c) 2006 S. Karger AG, Basel

    Far-infrared observations of a massive cluster forming in the Monoceros R2 filament hub

    Get PDF
    We present far-infrared observations of Monoceros R2 (a giant molecular cloud at approximately 830 pc distance, containing several sites of active star formation), as observed at 70 ÎŒm, 160 ÎŒm, 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm by the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on the Herschel Space Observatory as part of the Herschel imaging survey of OB young stellar objects (HOBYS) Key programme. The Herschel data are complemented by SCUBA-2 data in the submillimetre range, and WISE and Spitzer data in the mid-infrared. In addition, C18O data from the IRAM 30-m Telescope are presented, and used for kinematic information. Sources were extracted from the maps with getsources, and from the fluxes measured, spectral energy distributions were constructed, allowing measurements of source mass and dust temperature. Of 177 Herschel sources robustly detected in the region (a detection with high signal-to-noise and low axis ratio at multiple wavelengths), including protostars and starless cores, 29 are found in a filamentary hub at the centre of the region (a little over 1% of the observed area). These objects are on average smaller, more massive, and more luminous than those in the surrounding regions (which together suggest that they are at a later stage of evolution), a result that cannot be explained entirely by selection effects. These results suggest a picture in which the hub may have begun star formation at a point significantly earlier than the outer regions, possibly forming as a result of feedback from earlier star formation. Furthermore, the hub may be sustaining its star formation by accreting material from the surrounding filaments

    Inactivation of aPKCλ Reveals a Context Dependent Allocation of Cell Lineages in Preimplantation Mouse Embryos

    Get PDF
    BACKGROUND:During mammalian preimplantation development, lineage divergence seems to be controlled by the interplay between asymmetric cell division (once cells are polarized) and positional information. In the mouse embryo, two distinct cell populations are first observed at the 16-cell stage and can be distinguished by both their position (outside or inside) and their phenotype (polarized or non-polarized). Many efforts have been made during the last decade to characterize the molecular mechanisms driving lineage divergence. METHODOLOGY/PRINCIPAL FINDINGS:In order to evaluate the importance of cell polarity in the determination of cell fate we have disturbed the activity of the apical complex aPKC/PAR6 using siRNA to down-regulate aPKClambda expression. Here we show that depletion of aPKClambda results in an absence of tight junctions and in severe polarity defects at the 16-cell stage. Importantly, we found that, in absence of aPKClambda, cell fate depends on the cellular context: depletion of aPKClambda in all cells results in a strong reduction of inner cells at the 16-cell stage, while inhibition of aPKClambda in only half of the embryo biases the progeny of aPKClambda defective blastomeres towards the inner cell mass. Finally, our study points to a role of cell shape in controlling cell position and thus lineage allocation. CONCLUSION:Our data show that aPKClambda is dispensable for the establishment of polarity at the 8-cell stage but is essential for the stabilization of cell polarity at the 16-cell stage and for cell positioning. Moreover, this study reveals that in addition to positional information and asymmetric cell divisions, cell shape plays an important role for the control of lineage divergence during mouse preimplantation development. Cell shape is able to influence both the type of division (symmetric or asymmetric) and the position of the blastomeres within the embryo
    • 

    corecore