180 research outputs found

    A multi-scale, multi-wavelength source extraction method: getsources

    Full text link
    We present a multi-scale, multi-wavelength source extraction algorithm called getsources. Although it has been designed primarily for use in the far-infrared surveys of Galactic star-forming regions with Herschel, the method can be applied to many other astronomical images. Instead of the traditional approach of extracting sources in the observed images, the new method analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands. It cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. Sources are detected in the combined detection images by following the evolution of their segmentation masks across all spatial scales. Measurements of the source properties are done in the original background-subtracted images at each wavelength; the background is estimated by interpolation under the source footprints and overlapping sources are deblended in an iterative procedure. In addition to the main catalog of sources, various catalogs and images are produced that aid scientific exploitation of the extraction results. We illustrate the performance of getsources on Herschel images by extracting sources in sub-fields of the Aquila and Rosette star-forming regions. The source extraction code and validation images with a reference extraction catalog are freely available.Comment: 31 pages, 27 figures, to be published in Astronomy & Astrophysic

    On turbulent fragmentation and the origin of the stellar IMF

    Full text link
    Two varieties of the universal stellar initial mass function (IMF) viz., the Kroupa and the Chabrier IMF, have emerged over the last decade to explain the observed distribution of stellar masses. The possibility of the universal nature of the stellar IMF leads us to the interesting prospect of a universal mode of star-formation. It is well-known that turbulent fragmentation of gas in the interstellar medium produces a lognormal distribution of density which is further reflected by the mass-function for clumps at low and intermediate masses. Stars condense out of unstable clumps through a complex interplay between a number of dynamic processes which must be accounted for when tracing the origin of the stellar IMF. In the present work, applying the theory of gravitational fragmentation we first derive the mass function (MF) for clumps. Then a core mass function (CMF) is derived by allowing the clumps to fragment, having subjected each one to a random choice of gas temperature. Finally, the stellar IMF is derived by applying a random core-to-star conversion efficiency, ϵ\epsilon, in the range of 5%-15% to each CMF. We obtain a power-law IMF that has exponents within the error-bars on the Kropua IMF. This derived IMF is preceded by a similar core mass function which suggests, gravoturbulent fragmentation plays a key role in assembling necessary conditions that relate the two mass-functions. In this sense the star-formation process, at least at low redshifts where gas cooling is efficient, is likely to be universal. We argue that the observed knee in the CMF and the stellar IMF may alternatively be interpreted in terms of the characteristic temperature at which gas in potential star-forming clouds is likely to be found. Our results also show that turbulence in star-forming clouds is probably driven on large spatial scales with a power-spectrum steeper than Kolmogorov-type.Comment: 10 pages, 5 figures; To appear in New Astronomy; Figure numbers corrected in this versio

    Kinematics and the origin of the internal structures in HL Tau jet (HH 151)

    Full text link
    Knotty structures of Herbig-Haro jets are common phenomena, and knowing the origin of these structures is essential for understanding the processes of jet formation. Basically, there are two theoretical approaches: different types of instabilities in stationary flow, and velocity variations in the flow. We investigate the structures with different radial velocities in the knots of the HL Tau jet as well as its unusual behaviour starting from 20 arcsec from the source. Collation of radial velocity data with proper motion measurements of emission structures in the jet of HL Tau makes it possible to understand the origin of these structures and decide on the mechanism for the formation of the knotty structures in Herbig-Haro flows. We present observations obtained with a 6 m telescope (Russia) using the SCORPIO camera with scanning Fabry-Perot interferometer. Two epochs of the observations of the HL/XZ Tau region in Halpha emission (2001 and 2007) allowed us to measure proper motions for high and low radial velocity structures. The structures with low and high radial velocities in the HL Tau jet show the same proper motion. The point where the HL Tau jet bents to the north (it coincides with the trailing edge of so-called knot A) is stationary, i.e. does not have any perceptible proper motion and is visible in Halpha emission only. We conclude that the high- and low- velocity structures in the HL Tau jet represent bow-shocks and Mach disks in the internal working surfaces of episodic outflows. The bend of the jet and the brightness increase starting some distance from the source coincides with the observed stationary deflecting shock. The increase of relative surface brightness of bow-shocks could be the result of the abrupt change of the physical conditions of the ambient medium as well as the interaction of a highly collimated flow and the side wind from XZ Tau.Comment: To be published in Astronomy and Astrophysic

    Profiles of interstellar cloud filaments. Observational effects in synthetic sub-millimetre observations

    Full text link
    Sub-millimetre observations suggest that the filaments of interstellar clouds have rather uniform widths and can be described with the so-called Plummer profiles. The shapes of the filament profiles are linked to their physical state. Before drawing conclusions on the observed column density profiles, we must evaluate the observational uncertainties. We want to estimate the bias that could result from radiative transfer effects or from variations of submm dust emissivity. We use cloud models obtained with magnetohydrodynamic simulations and carry out radiative transfer calculations to produce maps of sub-millimetre emission. Column densities are estimated based on the synthetic observations. For selected filaments, the estimated profiles are compared to those derived from the original column density. Possible effects from spatial variations of dust properties are examined. With instrumental noise typical of the Herschel observations, the parameters derived for nearby clouds are correct to within a few percent. The radiative transfer effects have only a minor effect on the results. If the signal-to-noise ratio is degraded by a factor of four, the errors become significant and for half of the examined filaments the values cannot be constrained. The errors increase in proportion to the cloud distance. Assuming the resolution of Herschel instruments, the model filaments are barely resolved at a distance of ~400 pc and the errors in the parameters of the Plummer function are several tens of per cent. The Plummer parameters, in particular the power-law exponent p, are sensitive to noise but can be determined with good accuracy using Herschel data. One must be cautious about possible line-of-sight confusion. In our models, a large fraction of the filaments seen in the column density maps are not continuous structures in three dimensions.Comment: 12 pages, 14 figures, accepted to A&

    Gathering dust : A galaxy-wide study of dust emission from cloud complexes in NGC 300

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aims. We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods. We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of ~170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results. Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from ~1.1 × 10 3 to 1.4 × 10 4 M. The GDCs have effective temperatures of ~13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes ~16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 10 6 M. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds.Peer reviewe

    Evolution of dust and ice features around FU Orionis objects

    Get PDF
    (abridged) We present spectroscopy data for a sample of 14 FUors and 2 TTauri stars observed with the Spitzer Space Telescope or with the Infrared Space Observatory (ISO). Based on the appearance of the 10 micron silicate feature we define 2 categories of FUors. Objects showing the silicate feature in absorption (Category 1) are still embedded in a dusty and icy envelope. The shape of the 10 micron silicate absorption bands is compared to typical dust compositions of the interstellar medium and found to be in general agreement. Only one object (RNO 1B) appears to be too rich in amorphous pyroxene dust, but a superposed emission feature can explain the observed shape. We derive optical depths and extinction values from the silicate band and additional ice bands at 6.0, 6.8 and 15.2 micron. In particular the analysis of the CO_2 ice band at 15.2 micron allows us to search for evidence for ice processing and constrains whether the absorbing material is physically linked to the central object or in the foreground. For objects showing the silicate feature in emission (Category 2), we argue that the emission comes from the surface layer of accretion disks. Analyzing the dust composition reveals that significant grain growth has already taken place within the accretion disks, but no clear indications for crystallization are present. We discuss how these observational results can be explained in the picture of a young, and highly active accretion disk. Finally, a framework is proposed as to how the two categories of FUors can be understood in a general paradigm of the evolution of young, low-mass stars. Only one object (Parsamian 21) shows PAH emission features. Their shapes, however, are often seen toward evolved stars and we question the object's status as a FUor and discuss other possible classifications.Comment: accepted for publication in ApJ; 63 pages preprint style including 8 tables and 24 figure

    An analysis of spectra in the Red Rectangle nebula

    Full text link
    This paper presents an analysis of a series of spectra in the Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the blue, light from HD44179, refracted or scattered in the atmosphere, dominates the spectra. This paper questions the reliability of ground-based observations of extended objects in the blue.Comment: 25 figure

    Will the starless cores in Chamaeleon I and III turn prestellar?

    Get PDF
    The nearby Chamaeleon molecular cloud complex is a good laboratory to study the process of low-mass star formation since it consists of three clouds with very different properties. Cha III does not show any sign of star formation, while star formation has been very active in Cha I and may already be finishing. Our goal is to determine whether star formation can proceed in Cha III, and to compare the results to our recent survey of Cha I. We used the Large APEX Bolometer Array (LABOCA) to map Cha III in dust continuum emission at 870 micron. 29 sources are extracted from the map, all of them being starless. The starless cores are found down to a visual extinction of 1.9 mag, in marked contrast with other molecular clouds, including Cha I. Apart from this difference, the Cha III starless cores share very similar properties with those found in Cha I. At most two sources have a mass larger than the critical Bonnor-Ebert mass, which suggests that the fraction of prestellar cores is very low, even lower than in Cha I. Only the most massive sources are candidate prestellar cores, in agreement with the correlation found earlier in the Pipe nebula. The mass distribution of the 85 starless cores of Cha I and III that are not candidate prestellar cores is consistent with a single power law down to the 90% completeness limit, with an exponent close to the Salpeter value. A fraction of the starless cores in Cha I and III may still grow in mass and become gravitationally unstable. Based on predictions of numerical simulations of turbulent molecular clouds, we estimate that at most 50% and 20% of the starless cores of Cha I and III, respectively, may form stars. The LABOCA survey reveals that Cha III, and Cha I to some extent too, is a prime target to study the formation of prestellar cores, and thus the onset of star formation. (abridged).Comment: Accepted for publication in A&A. 22 pages, 16 figures, 4 tables. A version with high-resolution figures is available on request to the first autho

    Physical properties of interstellar filaments

    Full text link
    We analyze the physical parameters of interstellar filaments that we describe by an idealized model of isothermal self-gravitating infinite cylinder in pressure equilibrium with the ambient medium. Their gravitational state is characterized by the ratio f_cyl of their mass line density to the maximum possible value for a cylinder in a vacuum. Equilibrium solutions exist only for f_cyl < 1. This ratio is used in providing analytical expressions for the central density, the radius, the profile of the column density, the column density through the cloud centre, and the fwhm. The dependence of the physical properties on external pressure and temperature is discussed and directly compared to the case of pressure-confined isothermal self-gravitating spheres. Comparison with recent observations of the fwhm and the central column density N_H(0) show good agreement and suggest a filament temperature of ~10 K and an external pressure p_ext/k in the range 1.5x10^4 K/cm^3 to 5x10^4 K/cm^3. Stability considerations indicate that interstellar filaments become increasingly gravitationally unstable with mass line ratio f_cyl approaching unity. For intermediate f_cyl>0.5 the instabilities should promote core formation through compression, with a separation of about five times the fwhm. We discuss the nature of filaments with high mass line densities and their relevance to gravitational fragmentation and star formation.Comment: 18 pages, 12 figures accepted for publication (13/4/2012

    Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment

    Full text link
    The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iteration, which makes them numerically very demanding. Bjorkman & Wood recently proposed a frequency distribution adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-emitted photons. Although the method appears to yield correct results, we argue that its theoretical basis is not completely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether it is just a good and convenient approximation. We critically study the general problem of how an already sampled distribution can be adjusted to a new distribution by adding data points sampled from an adjustment distribution. We show that this adjustment is not always possible, and that it depends on the shape of the original and desired distributions, as well as on the relative number of data points that can be added. Applying this theorem to radiative equilibrium Monte Carlo calculations, we provide a firm theoretical basis for the frequency distribution adjustment method of Bjorkman & Wood, and we demonstrate that this method provides the correct frequency distribution through the additional requirement of radiative equilibrium. We discuss the advantages and limitations of this approach, and show that it can easily be combined with the presence of additional heating sources and the concept of photon weighting. However, the method may fail if small dust grains are included... (abridged)Comment: 17 pages, 2 figures, accepted for publication in New Astronom
    • …
    corecore