1,473 research outputs found

    Large neutral amino acids in the treatment of PKU: from theory to practice

    Get PDF
    Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cognitive outcome and quality of life in patients with PKU. Following various theories about the pathogenesis of cognitive dysfunction in PKU, LNAA supplementation may have multiple treatment targets: a specific reduction in brain phenylalanine concentrations, a reduction in blood (and consequently brain) phenylalanine concentrations, an increase in brain neurotransmitter concentrations, and an increase in brain essential amino acid concentrations. These treatment targets imply different treatment regimes. This review summarizes the treatment targets and the treatment regimens of LNAA supplementation and discusses the differences in LNAA intake between the classical dietary phenylalanine-restricted diet and several LNAA treatment forms

    Exogenous dopamine reduces GABA receptor availability in the human brain

    Get PDF
    Background: While it has recently been shown that dopamine release stimulates conscious self‐monitoring through the generation of gamma oscillations in medial prefrontal/anterior cingulate cortex, and that the GABAergic system is effective in producing such oscillations, interaction of the two transmitter systems has not been demonstrated in humans. We here hypothesize that dopamine challenge stimulates the GABA system directly in the medial prefrontal/anterior cingulate region in the human brain. // Methods: Positron emission tomography (PET) with the GABA receptor α1/α5 subtype ligand [11C] Ro15‐4513 was used to detect changes in GABA receptor availability after clinical oral doses of levodopa in a double blind controlled study. // Results: We here provide the first direct evidence for such coupling in the cerebral cortex, in particular in the medial prefrontal anterior cingulate region, by showing that exogenous dopamine decreases [11C] Ro15‐4513 binding widely in the human brain compatible with a fall in α1 subtype availability in GABA complexes due to increased GABA activity

    Recurrent Activity in Higher Order, Modality Non-Specific Brain Regions: A Granger Causality Analysis of Autobiographic Memory Retrieval

    Get PDF
    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self-awareness. Autobiographic memory retrieval of previous personal judgments of visually presented words was used as stimuli. It is demonstrated that the prestimulus condition is characterized by causal, recurrent oscillations which are maximal in the lower gamma range. When retrieving previous judgments of visually presented adjectives, this activity is dramatically increased during the stimulus task as ascertained by Granger causality analysis. Our results confirm the hypothesis that stimulation may enhance causal interaction between higher order, modality non-specific brain regions, exemplified in a network of autobiographical memory retrieval

    Gold Nanoparticle Delivery of Modified CpG Stimulates Macrophages and Inhibits Tumor Growth for Enhanced Immunotherapy

    Get PDF
    Gold nanoparticle accumulation in immune cells has commonly been viewed as a side effect for cancer therapeutic delivery; however, this phenomenon can be utilized for developing gold nanoparticle mediated immunotherapy. Here, we conjugated a modified CpG oligodeoxynucleotide immune stimulant to gold nanoparticles using a simple and scalable selfassembled monolayer scheme that enhanced the functionality of CpG in vitro and in vivo. Nanoparticles can attenuate systemic side effects by enhancing CpG delivery passively to innate effector cells. The use of a triethylene glycol (TEG) spacer on top of the traditional poly-thymidine spacer increased CpG macrophage stimulatory effects without sacrificing DNA content on the nanoparticle, which directly correlates to particle uptake. In addition, the immune effects of modified CpGAuNPs were altered by the core particle size, with smaller 15 nm AuNPs generating maximum immune response. These TEG modified CpG-AuNP complexes induced macrophage and dendritic cell tumor infiltration, significantly inhibited tumor growth, and promoted survival in mice when compared to treatments with free CpG

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    Working Together May Be Better: Activation of Reward Centers during a Cooperative Maze Task

    Get PDF
    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves

    Full text link
    The nonlocal spin injection in lateral spin valves is highly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin valve voltage, which decides the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 {\mu}V. Here we show that lateral spin valves with low resistive NiFe/MgO/Ag junctions enable the efficient spin injection with high applied current density, which leads to the spin valve voltage increased hundredfold. Hanle effect measurements demonstrate a long-distance collective 2-pi spin precession along a 6 {\mu}m long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin current based memory, logic and sensing devices.Comment: 23 pages, 4 figure

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore