288 research outputs found

    Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone

    Full text link
    The adrenal hormone corticosterone transcriptionally regulates responsive genes in the rodent hippocampus through nuclear mineralocorticoid and glucocorticoid receptors. Via this genomic pathway the hormone alters properties of hippocampal cells slowly and for a prolonged period. Here we report that corticosterone also rapidly and reversibly changes hippocampal signaling. Stress levels of the hormone enhance the frequency of miniature excitatory postsynaptic potentials in CA1 pyramidal neurons and reduce paired-pulse facilitation, pointing to a hormone-dependent enhancement of glutamate-release probability. The rapid effect by corticosterone is accomplished through a nongenomic pathway involving membrane-located receptors. Unexpectedly, the rapid effect critically depends on the classical mineralocorticoid receptor, as evidenced by the effectiveness of agonists, antagonists, and brain-specific inactivation of the mineralocorticoid but not the glucocorticoid receptor gene. Rapid actions by corticosterone would allow the brain to change its function within minutes after stress-induced elevations of corticosteroid levels, in addition to responding later through gene-mediated signaling pathways

    Offender rehabilitation : a normative framework for forensic psychologists

    Full text link
    Community protection from offenders is addressed through punishment, deterrence, incapacitation, and/or rehabilitation. The current public policy debate about community protection refers to community rights as opposed to offender rights as if the two are mutually exclusive. However, in this article it will be argued that offender rehabilitation can enhance community protection if it addresses community rights and offender rights. The author proposes a normative framework to guide forensic psychologists in offender rehabilitation. The normative framework considers psychological theory&mdash;the risk-need model to address community rights and the good lives model to address offender rights. However, forensic psychologists operate within the context of the criminal justice system and so legal theory will also be considered. Therapeutic jurisprudence can balance community rights and offender rights within a human rights perspective. The proposed normative framework guides forensic psychologists in the assessment of risk, the treatment of need, and the management of readiness in balancing community rights and offender rights. Within a human rights perspective, forensic psychologists have a duty to provide offenders with the opportunity to make autonomous decisions about whether to accept or reject rehabilitation. <br /

    Genes targeted by the estrogen and progesterone receptors in the human endometrial cell lines HEC1A and RL95-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When the steroid hormones estrogen and progesterone bind to nuclear receptors, they have transcriptional impact on target genes in the human endometrium. These transcriptional changes have a critical function in preparing the endometrium for embryo implantation.</p> <p>Methods</p> <p>382 genes were selected, differentially expressed in the receptive endometrium, to study their responsiveness of estrogen and progesterone. The endometrial cell lines HEC1A and RL95-2 were used as experimental models for the non-receptive and receptive endometrium, respectively. Putative targets for activated steroid hormone receptors were investigated by chromatin immunoprecipitation (ChIP) using receptor-specific antibodies. Promoter occupancy of the selected genes by steroid receptors was detected in ChIP-purified DNA by quantitative PCR (qPCR). Expression analysis by reverse transcriptase (RT)-PCR was used to further investigate hormone dependent mRNA expression regulation of a subset of genes.</p> <p>Results</p> <p>ChIP-qPCR analysis demonstrated that each steroid hormone receptor had distinct group of target genes in the endometrial cell lines. After estradiol treatment, expression of estrogen receptor target genes predominated in HEC1A cells (n = 137) compared to RL95-2 cells (n = 35). In contrast, expression of progesterone receptor target genes was higher in RL95-2 cells (n = 83) than in HEC1A cells (n = 7) after progesterone treatment. RT-PCR analysis of 20 genes demonstrated transcriptional changes after estradiol or progesterone treatment of the cell lines.</p> <p>Conclusions</p> <p>Combined results from ChIP-qPCR and RT-PCR analysis showed different patterns of steroid hormone receptor occupancy at target genes, corresponding to activation or suppression of gene expression after hormone treatment of HEC1A and RL95-2 cell lines.</p

    Estrogen and Progestogen Correlates of the Structure of Female Copulation Calls in Semi-Free-Ranging Barbary Macaques (Macaca sylvanus)

    Get PDF
    Females of many Old World primates produce conspicuous vocalizations in combination with copulations. Indirect evidence exists that in Barbary macaques (Macaca sylvanus), the structure of these copulation calls is related to changes in reproductive hormone levels. However, the structure of these calls does not vary significantly around the timing of ovulation when estrogen and progestogen levels show marked changes. We here aimed to clarify this paradox by investigating how the steroid hormones estrogen and progesterone are related to changes in the acoustic structure of copulation calls. We collected data on semi-free-ranging Barbary macaques in Gibraltar and at La ForĂȘt des Singes in Rocamadour, France. We determined estrogen and progestogen concentrations from fecal samples and combined them with a fine-grained structural analysis of female copulation calls (N = 775 calls of 11 females). Our analysis indicates a time lag of 3 d between changes in fecal hormone levels, adjusted for the excretion lag time, and in the acoustic structure of copulation calls. Specifically, we found that estrogen increased the duration and frequency of the calls, whereas progestogen had an antagonistic effect. Importantly, however, variation in acoustic variables did not track short-term changes such as the peak in estrogen occurring around the timing of ovulation. Taken together, our results help to explain why female Barbary macaque copulation calls are related to changes in hormone levels but fail to indicate the fertile phase

    Localization of Mineralocorticoid Receptors at Mammalian Synapses

    Get PDF
    In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids

    Measurements of top-quark pair differential and double-differential cross-sections in the \u2113 +jets channel with pp collisions at 1as=13 TeV using the ATLAS detector

    Get PDF

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Search for diboson resonances in hadronic final states in 139 fb −1 of pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: Narrow resonances decaying into W W, W Z or ZZ boson pairs are searched for in 139 fb−1 of proton-proton collision data at a centre-of-mass energy of s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted W or Z boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons
    • 

    corecore