801 research outputs found
Progressive internal gravity waves with bounded upper surface climbing a triangular obstacle
In this paper we discuss a theoretical model for the interfacial profiles of
progressive non-linear waves which result from introducing a triangular
obstacle, of finite height, attached to the bottom below the flow of a
stratified, ideal, two layer fluid, bounded from above by a rigid boundary. The
derived equations are solved by using a nonlinear perturbation method. The
dependence of the interfacial profile on the triangular obstacle size, as well
as its dependence on some flow parameters, such as the ratios of depths and
densities of the two fluids, have been studied
A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition
Terrestrial laser scanning (TLS) has been used extensively in Earth Science for acquisition of digital outcrop data over the past decade. Structure-from-motion (SfM) photogrammetry has recently emerged as an alternative and competing technology. The real-world performance of these technologies for ground-based digital outcrop acquisition is assessed using outcrops from North East England and the United Arab Emirates. Both TLS and SfM are viable methods, although no single technology is universally best suited to all situations. There are a range of practical considerations and operating conditions where each method has clear advantages. In comparison to TLS, SfM benefits from being lighter, more compact, cheaper, more easily replaced and repaired, with lower power requirements. TLS in comparison to SfM provides intrinsically validated data and more robust data acquisition in a wide range of operating conditions. Data post-processing is also swifter. The SfM data sets were found to contain systematic inaccuracies when compared to their TLS counterparts. These inaccuracies are related to the triangulation approach of the SfM, which is distinct from the time-of-flight principle employed by TLS. An elaborate approach is required for SfM to produce comparable results to TLS under most circumstances
The effects of tribological factors and load sequence on surface pitting and cracks in bearing steel
This paper presents an investigation of the influence of various tribological parameters on surface initiated damage through Rolling Sliding Tests (RSTs) using bearing steel specimens. The RSTs were conducted on a benchtop twin-disc machine, consisting of a tribometer and a rolling contact fatigue testing system. The parameters investigated were contact pressure, slipping ratio, rotational speed, lubricant viscosity and load sequence, with each of them varying between two values. The first step was an investigation of the Coefficient of Traction (COT) under different testing conditions, followed by a set of RSTs to investigate surface damage initiation. It was found that the COT increased significantly under certain conditions of opposite rotational direction. The RST results showed that cracks and spalls on the surface were severer when higher slip ratio, higher contact pressure and higher rotational speed were applied first than that when lower levels of these parameters were applied first
Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region
Recent experiments have confirmed the existence of rotational bands in the A
\~ 110 mass region with very extended shapes lying between super- and
hyper-deformation. Using the projected shell model, we make a first attempt to
describe quantitatively such a band structure in 108Cd. Excellent agreement is
achieved in the dynamic moment of inertia J(2) calculation. This allows us to
suggest the spin values for the energy levels, which are experimentally
unknown. It is found that at this large deformation, the sharply down-sloping
orbitals in the proton i_{13/2} subshell are responsible for the irregularity
in the experimental J(2), and the wave functions of the observed states have a
dominant component of two-quasiparticles from these orbitals. Measurement of
transition quadrupole moments and g-factors will test these findings, and thus
can provide a deeper understanding of the band structure at very extended
shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a
Rapid Communicatio
Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field
Soliton excitations and their stability in anisotropic quasi-1D ferromagnets
are analyzed analytically. In the presence of an external magnetic field, the
lowest lying topological excitations are shown to be either soliton-soliton or
soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic
size, these configurations correspond to twisted or untwisted pairs of Bloch
walls. It is shown that the fluctuations around these configurations are
governed by the same set of operators. The soliton-antisoliton pair has exactly
one unstable mode and thus represents a critical nucleus for thermally
activated magnetization reversal in effectively one-dimensional systems. The
soliton-soliton pair is stable for small external fields but becomes unstable
for large magnetic fields. From the detailed expression of this instability
threshold and an analysis of nonlocal demagnetizing effects it is shown that
the relative chirality of domain walls can be detected experimentally in thin
ferromagnetic films. The static properties of the present model are equivalent
to those of a nonlinear sigma-model with anisotropies. In the limit of large
hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to
appear in Phys Rev B, Dec (1994
Regularity of the eta function on manifolds with cusps
On a spin manifold with conformal cusps, we prove under an invertibility
condition at infinity that the eta function of the twisted Dirac operator has
at most simple poles and is regular at the origin. For hyperbolic manifolds of
finite volume, the eta function of the Dirac operator twisted by any
homogeneous vector bundle is shown to be entire.Comment: 22 pages, 2 figure
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Search for Extra Dimensions in Boson and Fermion Pair Production in e+e- Interactions at LEP
Extra spatial dimensions are proposed by recent theories that postulate the
scale of gravity to be of the same order as the electroweak scale. A sizeable
interaction between gravitons and Standard Model particles is then predicted.
Effects of these new interactions in boson and fermion pair production are
searched for in the data sample collected at centre-of-mass energies above the
Z pole by the L3 detector at LEP. In addition, the direct production of a
graviton associated with a Z boson is investigated. No statistically
significant hints for the existence of these effects are found and lower limits
in excess of 1 TeV are derived on the scale of this new theory of gravity
Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
- …