40 research outputs found
Barriers and Contradictions in the Resettlement of Single Homeless People
Research in one local authority area suggests that a number of social policy difficulties and contradictions need to be resolved if single homeless people are to be resettled effectively. In particular, there are competing pressures on social housing providers, who are expected to meet the needs of socially excluded individuals while also creating sustainable communities and operating in a cost efficient manner. The government needs to clarify that meeting housing need is a priority for social landlords, and provide adequate funding for long-term support, if single homeless people are to find appropriate permanent accommodation
Natural climate solutions
Our thanks for inputs by L. Almond, A. Baccini, A. Bowman, S. CookPatton, J. Evans, K. Holl, R. Lalasz, A. Nassikas, M. Spalding, M. Wolosin, and expert elicitation respondents. Our thanks for datasets developed by the Hansen lab and the NESCent grasslands working group (C. Lehmann, D. Griffith, T. M. Anderson, D. J. Beerling, W. Bond, E. Denton, E. Edwards, E. Forrestel, D. Fox, W. Hoffmann, R. Hyde, T. Kluyver, L. Mucina, B. Passey, S. Pau, J. Ratnam, N. Salamin, B. Santini, K. Simpson, M. Smith, B. Spriggs, C. Still, C. Strömberg, and C. P. Osborne). This study was made possible by funding from the Doris Duke Charitable Foundation. Woodbury was supported in part by USDA-NIFA Project 2011-67003-30205 Data deposition: A global spatial dataset of reforestation opportunities has been deposited on Zenodo (https://zenodo.org/record/883444). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710465114/-/DCSupplemental.Peer reviewedPublisher PD
National mitigation potential from natural climate solutions in the tropics.
Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr-1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'
A novel palaeoaltimetry proxy based on spore and pollen wall chemistry
Understanding the uplift history and the evolution of high altitude plateaux is of major interest to a wide range of geoscientists and has implications for many disparate fields. Currently the majority of palaeoaltimetry proxies are based on detecting a physical change in climate in response to uplift, making the relationship between uplift and climate difficult to decipher. Furthermore, current palaeoaltimetry proxies have a low degree of precision with errors typically greater than 1 km. This makes the calculation of uplift histories and the identification of the mechanisms responsible for uplift difficult to determine. Here we report on advances in both instrumentation and our understanding of the biogeochemical structure of sporopollenin that are leading to the establishment of a new proxy to track changes in the flux of UV-B radiation over geological time. The UV-B proxy is based on quantifying changes in the concentration of UV-B absorbing compounds (UACs) found in the spores and pollen grains of land plants, with the relative abundances of UACs increasing on exposure to elevated UV-B radiation. Given the physical relationship between altitude and UV-B radiation we suggest that the analysis of sporopollenin chemistry, specifically changes in the concentration of UACs, may offer the basis for the first climate independent palaeoaltimetry proxy. Owing to the ubiquity of spores and pollen in the fossil record our proposed proxy has the potential to enable the reconstruction of the uplift history of high altitude plateaux at unprecedented levels of fidelity, both spatially and temporally
Land-based measures to mitigate climate change : potential and feasibility by country
Acknowledgements The design of this study and the data generated was guided by expert consultations and relied on the help of many. We thank all those who contributed: Sierra Gladfelter, Jo House, Mercedes Bustamante, Susan Cook-Patton, Sara Leavitt, Nick Wolff, and Thomas Worthington. We thank M.-J. Valentino at Imaginary Office for helping to design the first three figures. This work was supported by the authors’ institutions and funding sources, including the Climate and Land-use Alliance, the Dutch Ministry of Agriculture, Nature Management and Food Quality, and the EU H2020 projects VERIFY and ENGAGE (grant agreement no. 821471).Peer reviewedPublisher PD
Natural climate solutions for the United States
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.This study was made possible by funding from the Doris Duke Charitable
Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring
System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges
support from the DOE’s Office of Biological and Environmental Research Program under the
award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal
Everglades Long-Term Ecological Research program under National Science Foundation grant
no. DEB-1237517
Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation
Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations
Changes in CO2 during ocean anoxic event 1d indicate similarities to other carbon cycle perturbations
Past greenhouse intervals of the Mesozoic were repeatedly punctuated by Ocean Anoxic Events (OAEs), major perturbations to the global carbon cycle and abrupt climate changes that may serve as relevant analogs for Earth’s greenhouse gas-forced climate future. The key to better understanding these transient climate disruptions and possible CO2 forced tipping-points resides in high-resolution, precise, and accurate estimates of atmospheric CO2 for individual OAEs. Here we present a high-temporal resolution, multi-proxy pCO2 reconstruction for the onset of mid-Cretaceous (Albian-Cenomanian Boundary) OAE1d. Coupling of pCO2 estimates with carbon isotopic compositions (δ13C) of charcoal, vitrain, and cuticle from the Rose Creek Pit (RCP), Nebraska, reveals complex phasing, including a lag between the well-documented negative δ13C excursion defining the onset of OAE1d and the CO2 increase. This lag indicates that increased CO2 or other C-based greenhouse gases may not have been the primary cause of the negative excursion. Our study reveals a pCO2 increase within the interval of the negative δ13C excursion, reaching a maximum of up to ~840 ppm (95% confidence interval -307 ppm/+167 ppm) toward its end. The reconstructed magnitude of CO2 increase (~357 ppm) is similar to that of Late Cretaceous OAE2 but of smaller magnitude than that of other major carbon cycle perturbations of the Mesozoic assessed via stomatal methods (e.g., the Toarcian OAE [TOAE], Triassic-Jurassic boundary event, Cretaceous-Paleogene Boundary event). Furthermore, our results indicate a possible shared causal or developmental mechanism with OAE1a and the TOAE
Cholinergic mechanisms in depression
Evidence supporting a cholinergic hypothesis of depression is presented. First, cholinergic overdrive produces behavioral, neuroendocrine, and polysomnographic features of melancholia, and melancholics exhibit state-independent supersensitivity to cholinergic overdrive. Drugs inducing up-regulation and supersensitivity of cholinergic systems produce behavioral, polysomnographic, and neuroendocrine effects of melancholia when withdrawn. These observations also implicate cholinergic system supersensitivity as a factor in the pathophysiology of certain affective disorders. Cholinergic and monoaminergic mechanisms reciprocally regulate drive-reduction, and substances of abuse either activate monoaminergic networks or antagonize cholinergic systems. These points are consistent with the hypothesis that dynamic interaction between cholinergic and monoaminergic systems is involved in the regulation of mood and affect. Finally, antimuscarinic agents have antidepressant effects. Thus, the hypothesis that supersensitivity of cholinergic systems is involved in the pathophysiology of affective disorders is supported by several lines of evidence. This evidence is reviewed; directions for future research and promising methods of investigation are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26059/1/0000133.pd
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population