417 research outputs found
Critical issues in the formation of quantum computer test structures by ion implantation
The formation of quantum computer test structures in silicon by ion
implantation enables the characterization of spin readout mechanisms with
ensembles of dopant atoms and the development of single atom devices. We
briefly review recent results in the characterization of spin dependent
transport and single ion doping and then discuss the diffusion and segregation
behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy
implantations as characterized through depth profiling by secondary ion mass
spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the
SiO2/Si interface during activation anneals, while antimony diffusion is found
to be minimal. An effect of the ion charge state on the range of antimony ions,
121Sb25+, in SiO2/Si is also discussed
A two-step learning approach for solving full and almost full cold start problems in dyadic prediction
Dyadic prediction methods operate on pairs of objects (dyads), aiming to
infer labels for out-of-sample dyads. We consider the full and almost full cold
start problem in dyadic prediction, a setting that occurs when both objects in
an out-of-sample dyad have not been observed during training, or if one of them
has been observed, but very few times. A popular approach for addressing this
problem is to train a model that makes predictions based on a pairwise feature
representation of the dyads, or, in case of kernel methods, based on a tensor
product pairwise kernel. As an alternative to such a kernel approach, we
introduce a novel two-step learning algorithm that borrows ideas from the
fields of pairwise learning and spectral filtering. We show theoretically that
the two-step method is very closely related to the tensor product kernel
approach, and experimentally that it yields a slightly better predictive
performance. Moreover, unlike existing tensor product kernel methods, the
two-step method allows closed-form solutions for training and parameter
selection via cross-validation estimates both in the full and almost full cold
start settings, making the approach much more efficient and straightforward to
implement
Mapping of ion beam induced current changes in FinFETs
We report on progress in ion placement into silicon devices with scanning
probe alignment. The device is imaged with a scanning force microscope (SFM)
and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor
surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of
1.6 um and 100 nm in diameter. Ion impacts upset the channel current due to
formation of positive charges in the oxide areas. The induced changes in the
source-drain current are recorded in dependence of the ion beam position in
respect to the FinFET. Maps of local areas responding to the ion beam are
obtained.Comment: IBMM 2008 conference proceedin
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Developing validated tools to identify pulmonary embolism in electronic databases: rationale and design of the PE-EHR plus study
Background Contemporary pulmonary embolism (PE) research, in many cases, relies on data from electronic health records (EHRs) and administrative databases that use International Classification of Diseases (ICD) codes. Natural language processing (NLP) tools can be used for automated chart review and patient identification. However, there remains uncertainty with the validity of ICD-10 codes or NLP algorithms for patient identification.Methods The PE-EHR+ study has been designed to validate ICD-10 codes as Principal Discharge Diagnosis, or Secondary Discharge Diagnoses, as well as NLP tools set out in prior studies to identify patients with PE within EHRs. Manual chart review by two independent abstractors by predefined criteria will be the reference standard. Sensitivity, specificity, and positive and negative predictive values will be determined. We will assess the discriminatory function of code subgroups for intermediate- and high-risk PE. In addition, accuracy of NLP algorithms to identify PE from radiology reports will be assessed.Results A total of 1,734 patients from the Mass General Brigham health system have been identified. These include 578 with ICD-10 Principal Discharge Diagnosis codes for PE, 578 with codes in the secondary position, and 578 without PE codes during the index hospitalization. Patients within each group were selected randomly from the entire pool of patients at the Mass General Brigham health system. A smaller subset of patients will also be identified from the Yale-New Haven Health System. Data validation and analyses will be forthcoming.Conclusions The PE-EHR+ study will help validate efficient tools for identification of patients with PE in EHRs, improving the reliability of efficient observational studies or randomized trials of patients with PE using electronic databases.Thrombosis and Hemostasi
Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders
Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders
- …