
J
H
E
P
1
1
(
2
0
1
7
)
0
5
7

Published for SISSA by Springer

Received: July 5, 2017

Accepted: October 31, 2017

Published: November 9, 2017

Universality of next-to-leading power threshold effects

for colourless final states in hadronic collisions

V. Del Duca,a,b E. Laenen,c,d,e L. Magnea,f L. Vernazzag and C.D. Whiteh

aETH Zurich, Institut fur theoretische Physik,

Wolfgang-Paulistr. 27, 8093, Zurich, Switzerland
bINFN Laboratori Nazionali di Frascati, 00044 Frascati (Roma), Italy
cNikhef, Science Park 105, NL–1098 XG Amsterdam, The Netherlands
dITFA, University of Amsterdam,

Science Park 904, Amsterdam, The Netherlands
eITF, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands
fDipartimento di Fisica and Arnold-Regge Center, Università di Torino,
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1 Introduction

The remarkable experimental precision and high statistics offered by current and future

colliders necessitates the calculation of high-order effects in QCD perturbation theory for

processes of increasing complexity. The calculation of next-to-leading order (NLO) QCD

corrections has reached the stage where automated tools are being used and multi-jet

production rates are evaluated (see for example [1]). Attention then focuses on QCD

corrections at NNLO or above, and on the inclusion of higher-order electroweak effects.

In this context, processes which are induced by loop effects present special difficulties:

typically, the leading order contribution involves a loop containing heavy particles, such

as top quarks or electroweak vector bosons, and is often computed in the context of an

effective field theory. NLO QCD corrections with exact dependence on the heavy particle

masses then involve intricate two-loop calculations: for multi-particle final states, these

corrections are not known, and even for two-particle final states they are typically only

known approximately, or in some cases numerically. Clearly, in all these cases it is desirable,

where possible, to improve upon existing results by providing analytic information. Even

partial information can be useful, since it can be used, for example, to speed up numerical

codes, and also to provide additional consistency checks.

In this paper, we consider the production of a generic colour-singlet final state in

hadronic collisions, and we study the effects of additional gluon radiation near partonic

threshold, where emitted gluons have a low energy or transverse momentum with respect
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to the incoming partons. In such cases, one commonly defines a dimensionless thresh-

old variable ξ, vanishing at the threshold, and it is well known that the corresponding

differential cross section has the generic form

dσ

dξ
=Kew (4παs)

n0

∞∑
n=0

(αs
π

)n 2n−1∑
m=0

[
c(−1)nm

(
logm ξ

ξ

)
+

+ c(δ)n δ(ξ)+ c(0)nm logm ξ+. . .

]
, (1.1)

where the overall factor is associated with the leading-order cross section: for loop-induced

processes, this may be proportional to a power of the strong coupling, as indicated, while

Kew contains electroweak couplings. The first two sets of terms on the right-hand side of

eq. (1.1) originate from soft and collinear radiation (real or virtual), and correspond to the

leading power in the threshold variable, and to corrections localised at the threshold, re-

spectively. These contributions are known to have a universal (process-independent) form,

that permits their resummation to all orders in perturbation theory. This resummation is

well understood and widely applied, and can be performed within a variety of approaches

(see for example [2–11]). Even without a full resummation, a fixed order evaluation of

these terms can be useful in estimating higher-order corrections to the cross-section, when

these are not known (see for example [12] for a review).

The third set of terms on the right-hand side of eq. (1.1) defines next-to-leading power

(NLP) contributions in the threshold variable, roughly corresponding to gluon radiation

that can be next-to-soft or collinear. Although power-suppressed, these terms are still

singular as ξ → 0, and can be numerically significant: for example, they contribute signifi-

cantly to the theoretical uncertainty for Higgs boson production in the gluon fusion chan-

nel [13], and their numerical impact has been explicitly confirmed by the recent calculation

of this process at N3LO [14–18]. A full, generally applicable resummation prescription for

NLP contributions is not presently known, even in the relatively simple case of parton an-

nihilation into electroweak final states: the problem has been intensively studied in recent

years, and partial progress has been made using a variety of methods [19–40], building

upon the earlier work of [41–43]. Even without a full resummation, however, knowledge

of NLP contributions at fixed order can provide useful analytic information where this

is missing, as well as furnishing improved approximations for unknown higher-order cross

sections. This is especially true if one can derive universal properties of NLP contributions,

applicable at a given order for a broad class of processes.

In this paper, we examine the universal properties of NLP radiation in the hadro-

production of an arbitrary number of colour-singlet particles at NLO. We will prove that

the NLO cross-section for this class of processes can be written in terms of the leading-order

cross-section with shifted kinematics, convolved with a simple universal K-factor. More

precisely, we find that the K-factor does not depend on the spin of the emitting parton,

and depends on the color representation only through a trivial replacement of colour fac-

tors. Our starting point will be a factorisation formula for NLP effects at amplitude level

recently derived in refs. [23, 24], which expresses the effect of adding an additional gluon

to an arbitrary hard process with an electroweak final state in terms of universal functions.

Our results provide a useful testing ground for this formula, and an examination of its

simpler consequences, aside from its role as a basis for resummation. Furthermore, our
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results have more practical consequences, providing an analytic approximation to the NLO

cross section for a number of interesting loop-induced processes for which only limited in-

formation is available. Interestingly, the universality of the result extends to differential

distributions, provided the shift in LO kinematics is properly understood. From a theo-

retical point of view, the universality and simplicity of our results at NLO can be seen

as a consequence of recently derived next-to-soft theorems [44–46] for radiative tree-level

gauge theory amplitudes: we note however that our factorisation formula is an all-order

result, and therefore will yield more general results, once the appropriate ingredients are

computed at the relevant orders.

From the point of view of phenomenology, the most interesting applications of our

results will concern the production of Higgs bosons in the gluon fusion channel, possibly

in association with electroweak gauge bosons. We will however show explicitly that the

formalism can be used also with (anti)quark initial states, and compare our results with

existing calculations. In the gluon fusion channel, we will begin by showing how known

properties of the single Higgs boson cross section emerge as a special case of our result.

We next move on to multiple Higgs boson production, which has been the focus of much

recent research. Beyond the leading-order result [47], we note that analytic expressions for

the cross section are known only in the large top mass limit for Higgs pair production [48,

49] and for triple Higgs boson production [50]. In the case of Higgs pair production,

leading order results with full top mass dependence were obtained in refs. [51, 52], and

numerical results have recently been presented at NLO [53] (see also [54]); leading power

threshold corrections have been considered in ref. [55], and corrections to the large top

mass approximation in ref. [56]. In the case of triple Higgs boson production, numerical

results with full top mass dependence at leading order and for real radiation at NLO were

obtained in ref. [57] and in ref. [58], respectively. Associated production of electroweak

bosons and Higgs bosons in the gluon fusion channel, discussed in ref. [59], also falls within

the scope of our method, although we will not discuss it in detail here.

In this paper, we go beyond previous analytic results for Higgs boson pair production,

by providing NLO corrections, up to NLP in the threshold variable, with full top mass

dependence. As a further illustration and check, we demonstrate consistency with known

results for triple Higgs boson production in the large top mass limit [50], diphoton produc-

tion [60], and the production of W+W− pairs [61]. These results serve as an illustration

of the method: we postpone a detailed phenomenological analysis, as well as applications

to triple Higgs production with full top mass dependencce, and to associated production

of Higgs bosons with Z bosons, to future work. We note in passing that the present results

also provide a strong consistency check on all future NLO analytic computations of loop-

induced processes of colour-singlet particles, which of course must agree with the simple

factorised expressions we derive at NLP.

The structure of our paper is as follows. In section 2, we briefly review the next-to-soft

factorisation formula of refs. [23, 24], before describing how it can be extended for use

in gluon-induced processes. In section 3, we derive an explicit expression for the NLO

cross-section of a colour-singlet final state in gluon fusion, valid up to NLP level. A similar

result for the quark channel is derived in section 4. In section 5, we show how known results
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in single Higgs boson production are reproduced, before examining multiple Higgs boson

production in section 6. Vector boson pair production is considered in section 7. Finally,

we discuss our results and future prospects in section 8.

2 NLP amplitude factorisation

In this section, we briefly review the results of refs. [23, 24], which derive a factorisation

formula for QCD radiation up to NLP level, and we provide a generalisation of these results

to the case of external incoming gluons. Consider an amplitude with two incoming partons

of momenta p1 and p2, and any number N of final state colour singlet particles, with

momenta pi, 3 ≤ i ≤ N + 2. As described in detail in ref. [24], any such amplitude may be

written in the factorised form

A({pi}) = H̃ ({pi}, n1, n2) S̃ (p1, p2)

∏2
k=1 J(pk, nk)∏2
k=1 J̃ (pk, nk)

. (2.1)

Here S̃(p1, p2) is a next-to-soft function, dressing the hard interaction with virtual ex-

changes of (next-to-)soft gluons, which couple to the external partons through the next-to-

eikonal Feynman rules described in refs. [20, 21]. Associated with each hard parton is a jet

function J(pi, ni), which collects collinear singularities, and which depends on an auxiliary

vector ni. The next-to-eikonal jet J̃ (pi, ni) corrects for the double counting of contribu-

tions from gluons which are both (next-to-)soft and collinear, and finally the hard function

H̃({pi}, n1, n2) is defined by matching to the amplitude on the left-hand side of eq. (2.1), so

that all dependence on the auxiliary vectors {ni} cancels out. If one ignores the presence of

next-to-eikonal Feynman rules, eq. (2.1) reduces to the well-known soft-collinear factorisa-

tion formula, describing the dressing of a given hard interaction process with leading-power

soft and collinear radiation (see, for example, [62]). The form of eq. (2.1), however, is a

crucial intermediate step in considering the emission of an additional gluon, of momentum

kµ and colour a. Up to NLP in this momentum, the resulting amplitude is given by [24]

A a
µ ({pi}, k) =

2∑
l=1

{[
1

2

S̃ aµ (p1, p2, k)

S̃(p1, p2)
+ gsT

a
l G

ν
l,µ

∂

∂pνl
+
J aµ (pl, nl, k)

J(pl, nl)
(2.2)

− gsT a
i G

ν
l,µ

∂

∂pνl
log

(
J(pl, nl)

J̃ (pl, nl)

)]
A ({pi})−A a, J̃l

µ ({pi}, k)

}
,

where gs is the QCD coupling,1 T a
i a colour generator on line i with adjoint index a, and

we have introduced the tensor [63]

Gµνl = ηµν − (2pl − k)ν

2pl · k − k2
kµ . (2.3)

In addition to the functions already appearing in eq. (2.1), eq. (2.2) contains two more

universal functions. First, the radiative next-to-soft function S̃ aµ is a matrix element of

1We absorb a factor µε, where µ is the dimensional regularisation scale, into the coupling for simplicity.
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next-to-eikonal Wilson lines directed along the directions of the incoming partons, like

the virtual next-to-soft function S̃, but with a single gluon present in the final state.

Furthermore, eq. (2.2) includes a radiative jet function J aµ collecting all contributions

associated with the emission of a gluon from the ith parton, and enhanced by virtual

collinear poles. This function was first introduced in the context of abelian gauge theory

in ref. [43], and its definition was recently generalised to non-abelian theories in ref. [24].

The radiative functions can be defined in terms of operator matrix elements, but for our

present NLO analysis, where radiative functions enter only at tree level, a diagrammatic

definition is sufficient.

The final term on the right-hand side of eq. (2.2) is a subtraction term that removes

any double counting of contributions occuring in both the radiative next-to-soft emission

function, and in the radiative jet emission functions: it can be obtained simply by taking

the next-to-soft limit of the radiative jet function. As was done in ref. [24], eq. (2.2) can

be considerably simplified by using renormalisation group arguments and computing the

right-hand side in the bare theory and with light-like reference vectors n2i = 0 for the jets.

With these choices, one can use the bare quantities

S̃ (p1, p2) = J(pi, ni) = J̃ (pi, ni) = 1 , n2i = 0 , (2.4)

and the amplitude can be written as

A a
µ ({pi}, k) =

2∑
l=1

{[
1

2
S̃ aµ ({pi}, k) + gsT

a
l G

ν
l,µ

∂

∂pνl
+ J aµ (pl, nl, k)

]
A ({pi})

− A a, J̃l
µ ({pi}, k)

}
. (2.5)

If we now focus on the NLO contributions to the cross section, there is a further significant

simplification: indeed, the leading-order term in the next-to-soft emission function, S̃(1)µ, a

consists of single gluon emissions from the hard incoming partons, and these contributions

are completely cancelled [24] by the leading-order subtraction term A(1),J̃l
µ, a , leaving

A(1)
µ,a ({pi}, k) =

2∑
l=1

[
gsTl, aG

ν
l,µ

∂

∂pνl
+ J (1)

µ, a (pl, nl, k)

]
A(0) ({pi}) , (2.6)

which expresses the complete one-gluon radiative amplitude at NLO and NLP in terms of

the Born amplitude. Note that in eq. (2.6) the non-radiative amplitude and jet emission

functions are understood as carrying implicit spin indices, depending on the identity of the

particle species in each jet.

The quark radiative jet function at leading order is simply given by the emission of a

single gluon from the incoming (anti)quark [24, 43], as shown in figure 1(a). Evaluating

the diagram gives2

J aµ (p, n, k) = gsT
a

[
(2p− k)µ

2p · k
+

ikβ

p · k
Sβµ

]
, Sβµ =

i

4
[γβ , γµ] , (2.7)

2Note that, by definition, the radiative jet function does not include the spinor wave function for the

external quark line.
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n

a

b c

k

p (p−k)

n

a

k

p (p−k)

i j

(a) (b)

Figure 1. Tree-level contribution to the radiative jet function for (a) an external quark; (b) an

external gluon.

where we have decomposed the result into spin-dependent and spin-independent parts, in-

troducing the generator Sβµ of Lorentz transformations on spinors. Note that at leading

order the quark jet function is independent of the auxiliary vector nµ, consistently with

eq. (2.6), which represents a physical amplitude and cannot depend on n. For the gluon

radiative jet function, at leading order, we can simply use a diagrammatic definition, anal-

ogous to the radiative quark jet, and shown in figure 1(b). Restoring explicit spin indices

for the external gluon, we can write the result of this diagram as

J aµ, ρσ(p, n, k) = gsT
a

[
(2p− k)µ

2p · k
ηρσ −

ikβ

p · k
Mβµ, ρσ

]
, (2.8)

where we have introduced the generator of Lorentz transformations acting on vector fields,

Mβµ, ρσ = i
(
ηβρηµσ − ηβσηµρ

)
. (2.9)

Once again, we have decomposed the kinematic part into its spin-dependent and spin-

independent parts (see for example [64]). The colour operator for the gluon case can be

explicitly interpreted as

[T a]bc = ifabc . (2.10)

Turning now to the derivative contribution to eq. (2.6), one may note that the action of the

projector Gµνl defined in eq. (2.3), up to NLP order, can be recast in terms of the orbital

angular momentum of parton l. Indeed, to this accuracy

Gνl,µ
∂

∂pνl
=

kν

pl · k

[
pl,ν

∂

∂pµl
− pl,µ

∂

∂pνl

]
= − ikν L

(l)
νµ

pi · k
, (2.11)

where L
(l)
νµ is the orbital angular momentum operator associated with the lth parton. Using

eqs. (2.8), (2.9), we can now rewrite eq. (2.6) in a unified notation for quarks and gluons, as

A(1)
µ,a ({pi}, k) =

2∑
l=1

gsTl,a

[
(2pl − k)µ

2pl · k
− ikν

pl · k

(
L(l)
νµ + Σ(l)

νµ

)]
A(0) ({pi})

=
2∑
l=1

gsTl,a

[
pl,µ
pl · k

− ikν J
(l)
νµ

pl · k

]
A(0) ({pi}) , (2.12)
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...

p
1

p
2

p
3

p
4

p
N + 2

b

c

Figure 2. The amplitude for the production of N colour-singlet particles from a pair of gluons,

without final state QCD radiation.

where in the first line Σ
(l)
νµ is the spin angular momentum operator for parton l, in the

relevant representation of the Lorentz group, acting as −S(l)
νµ for spin one half, and as M

(l)
νµ

for spin one, while J
(l)
νµ is the total angular momentum operator. Furthermore, in the second

line, we have omitted the term proportional to kµ, which gives a vanishing contribution

when contracted with a physical polarisation vector for the emitted gluon.

Equation (2.12) is recognisable as the recently derived next-to-soft theorem [44], which

mirrors a similar result derived in gravity [45, 46]. As noted, this formula encompasses both

the quark and gluon cases, provided the spin operator is interpreted appropriately, vali-

dating our diagrammatic definition for the leading order gluon radiative jet function. For

the NLO analysis performed in this paper, we could in fact have simply adopted eq. (2.12)

as the starting point for our following analysis; note, however, that eq. (2.2) and eq. (2.5)

are much more general results, applicable in principle to any order in perturbation theory.

3 Colour-singlet particle production in the gluon channel

In this section, we apply the result of eq. (2.12) to obtain a general expression for the NLO

cross-section for the production of N colour-singlet particles near threshold. We begin by

considering the gluon-induced process shown in figure 2, while we will turn to the quark-

induced process in section 4. At Born level, the momenta introduced in figure 2 satisfy the

leading-order momentum conservation condition

2∑
i=1

pµi =

N+2∑
i=3

pµi ≡ Pµ , (3.1)

with the Born-level centre-of-mass energy squared given by s = P 2. Beyond Born level, we

may define the dimensionless variable

z =
P 2

s
, (3.2)

which represents the fraction of the partonic centre-of-mass energy carried into the final

state by all colour singlet particles. At leading order obviously z = 1; beyond leading

order, additional real radiation may be emitted, in which case 0 ≤ z ≤ 1, and ξ ≡ 1 − z
is a dimensionless threshold variable of the kind introduced in eq. (1.1). In particular, at
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NLO only a single gluon can be emitted, and all contributions up to NLP in the emitted

momentum k are captured by eq. (2.12). We can then use this to obtain a cross-section

formula that is correct up to the first sub-leading order in ξ. To this end, it is useful to

write the complete radiative amplitude (before contraction with external gluon polarisation

vectors) as

Aσ, µνNLP = Aσ, µνscal. + Aσ, µνspin + Aσ, µνorb. , (3.3)

where σ is the Lorentz index of the emitted gluon, while µ and ν are the Lorentz indices

of the incoming gluons, and, for simplicity, we have suppressed momentum dependence,

colour indices and the superscript denoting the perturbative order. The three terms on the

right-hand side correspond to the scalar, spin-dependent and orbital angular momentum

terms in eq. (2.12) respectively. The colour indices of the incoming gluons are displayed

in figure 2, and we note that by colour conservation the leading order amplitude must be

proportional to δbc. Following eqs. (2.10), (2.12), one may write the scalar-like contribution

to the amplitude as

Aσ, µνscal. = igsfabc

[
(2p1 − k)σ

2p1 · k
− (2p2 − k)σ

2p2 · k

]
Aµν (3.4)

where, as above, we omitted the superscript denoting the perturbative order for the Born

amplitude Aµν . Using eqs. (2.9), (2.12), the spin-dependent contribution to the amplitude

is given by

Aσ, µνspin = igsfabc

[
Aαν

p1 · k
(kµδσα − kαηµσ)− A

µα

p2 · k
(kνδασ − kαηνσ)

]
. (3.5)

Finally, the orbital angular momentum contribution is

Aσ, µνorb. = igsfabc

[
Gασ1

∂Aµν

∂pα1
− Gασ2

∂Aµν

∂pα2

]
. (3.6)

After including polarisation vectors for the two incoming gluons, the squared matrix ele-

ment, accurate to NLP level and summed over polarisations and colours, is

|ANLP|2 =
∑

colours

(
Aσ1, µ1ν1scal. +Aσ1, µ1ν1spin +Aσ1, µ1ν1orb.

)∗
Pµ1µ2(p1, l1)Pν1ν2(p2, l2)Pσ1σ2(k, l3)

×
(
Aσ2, µ2ν2scal. +Aσ2, µ2ν2spin +Aσ2, µ2ν2orb.

)
, (3.7)

where we defined the polarisation sum

Pαβ(p, l) ≡
∑
λ

ε (λ)α (p) ε
(λ)∗
β (p) = −ηαβ +

pαlβ + pβlα
p · l

, (3.8)

with l is an arbitrary light-like reference vector used to define physical polarisation states,

whose dependence must cancel in the final result. Alternatively, one could sum over all

polarisations, using Pαβ = −ηαβ , and correct for this by including external ghost contribu-

tions. Following this second approach, it is fairly easy to conclude that ghost contributions

vanish at NLP: indeed, final state ghost emission is suppressed by a power of the energy at
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amplitude level, and thus contributes at NNLP at cross section level; furthermore, diagrams

with a ghost-antighost pair in the initial state do not couple directly to fermions or to the

Higgs boson, and are strongly suppressed. These expectations are borne out by a direct

calculation, showing that all terms proportional to the vector lµ in eq. (3.7) are beyond the

required accuracy. We conclude that we can perform a sum over all polarisation, so that

eq. (3.7) simplifies to

|ANLP|2 =
∑

colours

{∣∣Aσ, µνscal.

∣∣2 + 2Re
[(
Aσ, µνspin +Aσ, µνorb.

)∗
A scal. σ, µν

]}
, (3.9)

where in the second term we need to keep only those terms which are leading power in

the scalar part of the amplitude. It is straightforward to show that the first term on the

right-hand side yields∑
colours

∣∣Aσ, µνscal.

∣∣2 = 2g2sNc

(
N2
c − 1

) p1 · p2
p1 · k p2 · k

|Aµν |2 , (3.10)

so that only the leading power term survives. For the gluon-initiated process we are

considering in this section, the spin term in eq. (3.9) can be shown to vanish upon summing

over all polarisations. For example, the spin contribution from the first leg is

∑
colours

2 Re
[
Aσ, µνspinA

∗
scal. σ, µν

]
= −

2g2sCA
(
N2
c − 1

)
p1 · k

(
p1σ
p1 · k

− p2σ
p2 · k

)
×
(
kµησα − kαηµσ

)
Re
[
A ν
αA∗µν

]
. (3.11)

The prefactor in the second line is antisymmetric under the interchange of α and µ, and

thus vanishes when contracted with the squared Born amplitude, which is symmetric; the

same argument applies to the second incoming gluon. Note that the argument applies also

when the Born amplitude is loop induced, and thus may acquire an imaginary part (as is

the case here). The orbital angular momentum contributions give∑
colours

2 Re
[
Aσ, µνorb. A scal. σ, µν

]
= − 2g2sNc

(
N2
c − 1

)
Aµν

[
Gασ1

∂Aµν

∂pα1
−Gασ2

∂Aµν

∂pα2

]
×
(
p1,σ
p1 · k

− p2,σ
p2 · k

)
(3.12)

=
2g2sNc

(
N2
c − 1

)
p1 · p2

p1 · k p2 · k

[
δpα1

∂

∂pα1
+ δpα2

∂

∂pα2

]
|Aµν |2 ,

where we defined

δpα1 =−1

2

(
p2 ·k
p1 ·p2

pα1−
p1 ·k
p1 ·p2

pα2 +kα
)
, δpα2 =−1

2

(
p1 ·k
p1 ·p2

pα2−
p2 ·k
p1 ·p2

pα1 +kα
)
. (3.13)

Note that these shifts are proportional to the soft momentum k and transverse to their

respective momenta, pi · δpi = 0. This second property follows from the fact that the

ith momentum shift is derived from the orbital angular momentum operator of eq. (2.11),
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which generates an infinitesimal Lorentz transformation transverse to the momentum pi.

Combining eq. (3.12) with eq. (3.10), we can write

|ANLP|2 =
2g2sNc

(
N2
c − 1

)
p1 · p2

p1 · k p2 · k
|Aµν (p1 + δp1, p2 + δp2)|2 . (3.14)

Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO

squared matrix element for the production of an arbitrary colour-singlet final state can be

absorbed into a shift in the kinematics of the Born contribution. Corrections to this shifting

procedure involve terms at least quadratic in δpi, and thus beyond the NLP approximation.

In section 4, we will show that the same property is shared by quark-initiated processes.

Note that eq. (3.14) is fully differential in final state momenta, and can be applied to

generate distributions valid at NLO and to NLP accuracy. On the other hand, using

simple properties of phase space, one can also derive a similarly simple expression for the

inclusive cross section. In order to do so, note that the effect of the required momentum

shifts on the partonic centre-of-mass energy is given by a simple rescaling. Indeed,

s → (p1 + p2 + δp1 + δp2)
2 = s+ 2 (δp1 + δp2) · (p1 + p2) . (3.15)

Substituting the definitions of eq. (3.13) in eq. (3.15), and using eq. (3.2), together with

the NLO momentum conservation condition

p1 + p2 = k + P , (3.16)

it is easy to show that eq. (3.15) can be written simply as

s → zs . (3.17)

To construct the partonic cross-section, we must now introduce the appropriate factors to

average over initial state colours and spins, integrate over the (N + 1)-body final state

phase space, and include the flux factor. We find

σ̂
(gg)
NLP =

1

(d− 2)2 (N2
c − 1)2

1

2s

∫
dΦN+1 (P + k; p3, . . . , pN+2, k) |ANLP|2 , (3.18)

where

dΦn (Q; {qi}) = (2π)d δ(d)
(
Q−

n∑
i=1

qi

) n∏
i=1

dd−1qi
(2π)d−1 2Ei

(3.19)

denotes the n-body Lorentz-invariant phase space for a process with total final state mo-

mentum Q =
∑

i qi, and qµi = (Ei, qi) in a suitable frame. For the phase space, we may

use the well-known result∫
dΦN+1 (P + k; p3, . . . pN+1, k) =

1

2π

∫
dP 2 dΦ2 (P + k;P, k) dΦN (P ; p3, . . . pN+2) ,

(3.20)
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factorising the phase space of the N colour-singlet particles from a two-body phase space

involving the total momentum of the colourless system, and the additional gluon momen-

tum k. The latter can be written more explicitly by parametrising

p1 =

√
s

2
(1, 0, . . . , 0, 1) ,

p2 =

√
s

2
(1, 0, . . . , 0,−1) ,

k =
(1− z)

√
s

2
(1, 0, . . . , sinχ, cosχ) .

(3.21)

Introducing the variable

y =
1 + cosχ

2
, (3.22)

one then finds (see for example ref. [21] for a recent derivation)

dΦ2 (P + k;P, k) =

(
4π

s

)ε 1

8π Γ(1− ε)
(1− z)1−2ε

[
y(1− y)

]−ε
dy . (3.23)

Using eq. (3.23) together with eqs. (3.2), (3.14) in eq. (3.18) yields

dσ̂
(gg)
NLP

dz
=

g2sNc

8(d− 2)2π2 (N2
c − 1) Γ(1− ε) s

(
4πµ2

s

)ε ∫ 1

0
dy
[
y(1− y)

]−ε−1
(1− z)−1−2ε

×
∫
dΦ

(z)
N

∣∣∣Aµν(p1 + δp1, p2 + δp2)
∣∣∣2 , (3.24)

where we reinstated the explicit dependence on the dimensional regularisation scale µ, and

we denoted by dΦ
(z)
N the phase space for N (colour-singlet) particles with a partonic centre-

of-mass energy shifted according to eq. (3.17). We may easily rewrite this result in terms

of the leading-order cross section with shifted kinematics, which is given by

σ
(gg)
Born (zs) =

1

2(d− 2)2 (N2
c − 1) zs

∫
dΦ

(z)
N

∣∣∣Aµν (p1 + δp1, p2 + δp2)
∣∣∣2 . (3.25)

This leads us to our second central result: a simple factorised expression for the inclusive

cross section, valid at NLO and NLP for the production of a generic colour-singlet system,

which can be written as

dσ̂
(gg)
NLP

dz
= CAKNLP (z, ε) σ̂

(gg)
Born (zs) , (3.26)

where the next-to-leading power K factor is easily computed, with the result

KNLP (z, ε) =
αs
π

(
4πµ2

s

)ε
z (1− z)−1−2ε

Γ2(−ε)
Γ(−2ε)Γ(1− ε)

=
αs
π

(
µ2

s

)ε [
2− 2D0(z)

ε
+ 4D1(z)− 4 log(1− z)

]
. (3.27)

In the second line of eq. (3.27) we expanded the result to NLP in (1−z) and to finite order

in ε, and we introduced the MS scale µ2 = µ2 e ln(4π)−γE and the plus distributions

Di(z) ≡
(

logi(1− z)

1− z

)
+

. (3.28)
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Figure 3. The amplitude for the production of N colour-singlet particles from a quark-antiquark

pair, without final state QCD radiation.

Eqs. (3.26), (3.27) show explicitly that the NLO K-factor for the production of N colour-

singlet particles in the gluon channel is simple and universal, up to next-to-leading power

in the threshold variable. This is a powerful constraint, and we will discuss some specific

examples in the following sections. First, however, we consider an analogous formula in

the quark channel.

4 Colour-singlet particle production in the quark channel

In the previous section, we have derived an explicit universal K-factor for multiple colour-

singlet particle production in the gluon-gluon channel. In this section, we consider the cross

section for quark-induced production of colour-singlet particles, and show that an identical

result holds, up to a trivial replacement of colour factors. The universality of the result is

not obvious from the outset, and it comes about through an interesting reshuffling of the

contributions of spin and angular momentum operators, as compared to the gluon-induced

process. We take the leading order process shown in figure 3, and consider the radiation

of an additional gluon from the incoming quark and antiquark lines. One may write the

LO amplitude as

Aij ({pi}) = δij v̄(p2)A ({pi})u(p1) , (4.1)

where i, j are the colour indices of the incoming quark and antiquark (suppressed in what

follows for brevity), and the factor A({pi}), matrix-valued in spinor space, is the quan-

tity entering eq. (2.6), namely the leading-order amplitude with external wave functions

removed. Following the procedure adopted in the gluon case, we may decompose the NLO

amplitude, before contraction with external spinors, according to

AσNLP = Aσscal. +Aσspin +Aσorb. , (4.2)

where the three terms on the right-hand side denote the scalar-like, spin, and orbital angular

momentum contributions, and we have suppressed spinor indices (as well as color labels)

for brevity. For the scalar and orbital angular momentum contributions, which do not

depend explicitly on the spin (apart from replacing the vector indices on the leading-order

amplitude with spinor indices), the arguments of the previous section may be repeated,
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and one may write3

Aσscal. +Aσorb. = gs

(
pσ1
p1 · k

− pσ2
p2 · k

)
A (p1 + δp1, p2 + δp2) , (4.3)

where the momentum shifts are defined in eq. (3.13). Including the (anti)quark wave

functions and performing color and spin sums, we then find

|AσNLP|
2
scal.+orb. = g2sNcCF

2p1 ·p2
p1 ·kp2 ·k

Tr
[
6p1A(p1+δp1,p2+δp2) 6p2A† (p1+δp1,p2+δp2)

]
= g2sNcCF

s2

p1 ·kp2 ·k
Tr
[
6n1A(p1+δp1,p2+δp2) 6n2A† (p1+δp1,p2+δp2)

]
,

(4.4)

where in the second line we have introduced the dimensionless vectors

nµi =
pµi√
s

i = 1, 2 . (4.5)

By comparing eq. (4.4) with its LO counterpart,

|A(p1, p2)|2 = Nc sTr
[
6n1A(p1, p2) 6n2A†(p1, p2)

]
, (4.6)

and using eq. (3.17) we may promote the momentum shift in eq. (4.4) to apply to the entire

squared amplitude. This leads to

|AσNLP|
2
scal.+orb. =

g2sCF
z

s

p1 · k p2 · k
|A (p1 + δp1, p2 + δp2)|2 . (4.7)

Note the close resemblance of eq. (4.7) and eq. (3.14): they differ only by the color factor

and a rescaling by a factor of z. We must still, however, add to eq. (4.7) the interference

between the spin-dependent part of the NLO amplitude, and the eikonal amplitude. In

the gluon case, this turned out to vanish in Feynman gauge, upon summing over all gluon

polarisations, which was allowed at NLP accuracy. For an incoming fermion, we find

that the spin contribution does not vanish, and indeed it precisely compensates for the z

rescaling observed in eq. (4.7), recovering the universality of the result.

The spin-dependent part of the NLO amplitude is given by the diagrams of figure 4,

which evaluate to

εσ(k) taji v̄(p2)Aσspin u(p1) = − i gs t
a
ji kβ εσ(k) v̄(p2)

[
AΣβσ

p1 · k
+

ΣβσA
p2 · k

]
u(p1)

= − gs taji εσ(k) v̄(p2)

[
A 6k γσ

2p1 · k
− γσ 6kA

2p2 · k

]
u(p1) . (4.8)

In the second line of eq. (4.8), we anticommuted Dirac matrices and used the physical

polarisation condition kσεσ(k) = 0 to write the result in a form which will be more con-

venient in what follows. Up to NLP accuracy in the squared amplitude, we only need to

3Following the convention of eq. (4.1), we do not include the colour generator taji in the fundamental

representation in the definition of the stripped amplitude A.
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Figure 4. Diagrams contributing to the spin-dependent part of the NLO cross-section, where •
denotes the magnetic moment coupling of the gluon to the spin of the quark.

consider the interference of eq. (4.8) with the (leading power) scalar part of the NLO am-

plitude. Furthermore, since we are considering the emission of a single gluon, we can sum

over all polarisations, rather than restricting to physical polarisations only. The relevant

contribution to the squared matrix element is then

∑
colours

2 Re
[
A†scal.A spin

]
NLP

= − g2sNcCF
p1 · k p2 · k

Tr
[
6p2
(
A 6k 6p2+ 6p1 6kA

)
6p1A†

]
. (4.9)

To simplify this further, we may expand the emitted gluon momentum in the Sudakov

decomposition

kσ =
p2 · k
p1 · p2

pσ1 +
p1 · k
p1 · p2

pσ2 + kσT , kT · p1 = kT · p2 = 0 . (4.10)

We then observe that, to linear order in kµ, the Dirac trace in eq. (4.10) cannot depend on

kT . Indeed, one easily finds∑
colours

2 Re
[
A†scal.A spin

]
NLP

= − g2sNcCF
2p1 · p2

p1 · k p2 · k
k · (p1 + p2)

p1 · p2
|A(p1, p2)|2 . (4.11)

By comparing with the squared scalar part of the amplitude∑
colours

A†scal.A scal. = g2sNcCF
2p1 · p2

p1 · k p2 · k
|A(p1, p2)|2 , (4.12)

we see that the spin-dependent contribution to the squared amplitude can be obtained

from the part which is leading power in the gluon momentum, simply through rescaling by

the factor

− k · (p1 + p2)

p1 · p2
= − (1− z) , (4.13)

where we have used the momentum parametrisation of eq. (3.21).

Combining eq. (4.7) with eq. (4.12), we see that the rescaling factors cancel at NLP in

(1− z). Indeed one may write

|ANLP|2 = g2s CF
s

p1 · k p2 · k

{
|A(p1 + δp1, p2 + δp2)|2

z
− |A(p1, p2)|2 (1− z)

}
. (4.14)
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Expanding now in powers of (1− z), one gets to first order

|ANLP|2 = g2s CF
s

p1 · k p2 · k

{
|A(p1 + δp1, p2 + δp2)|2 (4.15)

+
(
|A(p1 + δp1, p2 + δp2)|2 − |A(p1, p2)|2

)
(1− z)

}
,

and one observes that the second line is effectively O(1− z)2. We find then

|ANLP|2 = g2s CF
s

p1 · k p2 · k
|A(p1 + δp1, p2 + δp2)|2 , (4.16)

which is precisely analogous to eq. (3.14), except for the replacement of the colour factor,

which here is associated with the fundamental rather than adjoint representation of the

gauge group. Once again, at NLP, eq. (4.16) can be used in a fully differential implemen-

tation for the final state kinematics.

Having obtained eq. (4.16), one may form the cross-section by integrating with the

(N + 1)-body phase space, exactly as was done in the gluon case. One finds then

dσ̂
(qq)
NLP

dz
= CF KNLP (z, ε) σ̂

(qq)
Born (zs) , (4.17)

with the same factor KNLP (z, ε), given in eq. (3.27).

A first check on this result is that it reproduces the NLO K-factor for Drell-Yan

production of a vector boson of invariant mass Q2, where one has

z =
Q2

s
. (4.18)

In this case, as for any 2 → 1 process, the LO partonic cross section has support only on

the partonic threshold: for Drell-Yan production,

σ
(qq)
Born(s) ∝ δ(Q2 − s) =

1

s
δ

(
Q2

s
− 1

)
, (4.19)

so that the LO cross section with shifted kinematics is

σ
(qq)
Born(zs) ∝ δ

(
Q2 − zs

)
=

1

s
δ

(
Q2

s
− z
)
. (4.20)

The delta function imposes the correct definition of the threshold variable at NLO, while

the rest of the cross section is unaffected by the shift in kinematics. To compare with

standard results, we must note that the MS scale µ2 is usually set equal to the final state

invariant mass Q2. To this end, one may write(
µ2

s

)ε
=

(
µ2

Q2

)ε(
Q2

s

)ε
→ zε , (4.21)

so that eq. (3.26) becomes

dσ̂qqNLP

dz
=
αs
π
CF z

ε

[
2− 2D0(z)

ε
+ 4D1(z)− 4 log(1− z)

]
σ
(qq)
Born(zs)

=
αs
4π

CF

[
8− 8D0(z)

ε
+ 16D1(z)− 16 log(1− z) + 8

]
σ
(qq)
Born(zs) , (4.22)

which precisely agrees with the well-known results quoted for example in refs. [21, 65].

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
0
5
7

(a) (b) (c)

Figure 5. (a) Leading order diagram for the production of a Higgs boson via gluon fusion; (b)

Contact interaction in the large top mass limit; (c) Contact interaction for radiation of an extra

gluon.

5 Single Higgs boson production via gluon fusion

Having presented our results for both quark- and gluon-induced colour-singlet particle

production, we now examine a first significant application of the gluon result, eq. (3.27):

the single production of Higgs bosons in the gluon fusion channel. As is well known, this

is the principal production mode for Higgs bosons at the LHC, and higher-order QCD

corrections have been studied in great detail and with great efforts in recent years. In

the effective field theory with the top quark integrated out, they have been calculated

up to N3LO in perturbation theory [14–18, 66–69]. Top-mass effects are know exactly at

NLO [70], and have been studied at NNLO as a power expansion in m2
h/m

2
t [71, 72]. Here

we will see how the intricate top mass dependence at NLO simplifies considerably in the

threshold region, including NLP corrections.

At leading order, the incoming gluons couple to the Higgs boson via a top-quark loop, as

shown in figure 5(a). The leading order cross-section for this process (see for example [66])

can be written as

σhBorn(s) =
α2
s

π

m2
h

576v2
(1 + ε)F (τ, ε) δ(s−m2

h) , (5.1)

where mh and v are the Higgs mass and vacuum expectation value respectively.4 The form

factor F (τ, ε) depends on the dimensionless variable

τ =
s

4m2
t

, (5.2)

and it is given by [66]

F (τ, ε) =
9

4

1

τ2

∣∣∣∣1 +

(
1− 1

τ

)
arcsin2

(√
τ
)∣∣∣∣2 + O(ε) , (5.3)

with a normalisation chosen so that F (τ, ε)→ 1 as τ → 0. The cross section with kinematics

shifted according to eq. (3.15) can then be written as

σhBorn(zs) =
α2
s

π

z

576v2
(1 + ε)F (zτ, ε) δ

(
z −

m2
h

s

)
. (5.4)

4In eq. (5.1) we have omitted scale factors relating to the d-dimensional coupling αs, which amounts to

the choice µ = mh.
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Substituting this result into eq. (3.26) and expanding in powers of (1 − z) and ε one finds

dσhNLP

dz
=

α3
sCA

288π2v2
F (zτ, ε)

(
2−D0(z)

ε
+ 2D1(z)−D0(z)− 4 log(1− z) + 2

)
. (5.5)

It is easy to check that eq. (5.5) agrees with the known analytic NLO result of ref. [66] in

the mt →∞ limit. We note, however, that the result of eq. (5.5) is much more informative:

it includes the full dependence on the top quark mass up to NLP order, and can thus be

applied for arbitrary mt. This is a remarkable simplification of the intricate result of ref. [70]

for the full mt dependence: after shifting the kinematics of the leading order result, the

resulting K-factor is entirely independent of the top quark mass, which makes the formula

especially simple to apply in practical applications.5

It is interesting to examine the anatomy of the result in eq. (5.5) in slightly more detail.

If one were to calculate the NLO cross section by starting manifestly in the large top mass

limit (i.e. by using an effective field theory), the leading order graph would contain an

effective point-like interaction coupling the two incoming gluons to a Higgs, as shown in

figure 5(b). At NLO, one can radiate the extra gluon from either of the incoming gluons,

and one must also include the additional effective coupling shown in figure 5(c), namely

a point-like interaction between three gluons and a Higgs boson. If one resolves the top

quark loop as in figure 5(a), this extra interaction corresponds to emissions from inside

the top quark loop. In the NLP calculation, there is no need to include any additional

diagrams to capture these contributions: they are generated precisely by the orbital angular

momentum contributions in eq. (3.6): therefore, as the above analysis reveals, we can choose

to associate these terms with a shift in the kinematics of the leading order result, up to

corrections subleading in soft momentum. Seen from the point of view of the effective field

theory at large mt, it is highly non-trivial that such a shift captures the contribution of

higher-order operators in the effective Lagrangian.

6 Multiple Higgs boson production

In the previous section we have tested our main result, given by eq. (3.26) for gluon scat-

tering, by reproducing known results in the cross section for single Higgs boson production

via gluon fusion. We now consider the case of Higgs boson pair production, a process of

ongoing interest at the LHC, due to its potential role in extracting the Higgs boson self-

coupling. Analytic results for this process are known up to NNLO in the large top mass

limit [47–49], but only at leading order with full top mass dependence [51, 52]. Further

studies have looked at systematically improving the effective field theory results by includ-

ing leading-power threshold effects [55], or contributions suppressed by powers of the top

mass [56]. Recently, numerical results at NLO accuracy with full top mass dependence

have become available [53] (see also [54]). This, however, does not preclude the desire

for analytic results, which can serve to improve the efficiency of numerical computations,

whilst also providing clues regarding higher-order structures in perturbation theory. This

5Indeed, we have checked that eq. (5.5) reproduces the K-factor reported in ref. [71], which features a

double expansion in threshold parameter and top mass.
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Figure 6. Leading-order diagrams contributing to Higgs boson pair production.

is especially true in Higgs boson pair production, given that the large top mass limit is

not a good approximation, unlike the case of single Higgs production. The leading order

diagrams for Higgs pair production are shown in figure 6, and the leading order amplitude

may be written as

Aµν =
αs

2πv2

[
(C4F4 + C�F�) T0, µν + C�G� T2, µν

]
, (6.1)

where (in the Standard Model)

C4 =
3m2

h

s−m2
h

, C� = 1 , (6.2)

and F4, F�, G� are form factors arising from the triangle and box graphs, as indicated by

the subscripts. They depend on the Higgs boson and top masses, as well as the partonic

centre of mass energy s and the other Mandelstam invariants

t = −1

2

[
s− 2m2

h − s
√

1− 4m2
h

s
cos θ

]
,

u = −1

2

[
s− 2m2

h + s

√
1− 4m2

h

s
cos θ

]
. (6.3)

The basis tensors Ts, µν , with s = 0, 2, in eq. (6.1) are associated with the exchange of spin

0 and spin 2 in the s channel, respectively. Denoting the gluon momenta by p1 and p2 and

the Higgs boson momenta by p3 and p4, their explicit forms are

Tµν0 = p1 · p2 ηµν − pν1 p
µ
2 , (6.4)

Tµν2 = p1 · p2 ηµν +
1

p2T

[
m2
h p

ν
1 p

µ
2 − 2p2 · p3 pν1 p

µ
3 − 2p1 · p3 pµ2 p

ν
3 + 2p1 · p2 pµ3 p

ν
3

]
,

where

p2T =
2(p1 · p3)(p2 · p3)

p1 · p2
−m2

h . (6.5)

With these notations, the leading-order distribution in the Mandelstam invariant t can be

written as [47]

dσ̂hhBorn

dt
=

α2
s

8π3
1

512 v4

[∣∣C4F4 + C�F�
∣∣2 +

∣∣C�G�
∣∣2] . (6.6)

This expression simplifies considerably in the large top mass limit, where

F4 →
2

3
, F� → −

2

3
, G� → 0 , (6.7)
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so that eq. (6.6) becomes

dσ̂hhBorn

dt
=

α2
s

16π3
1

576 v4

(
4m2

h − s
s−m2

h

)2

. (6.8)

We observe that, in the large top mass limit, the leading-order cross section vanishes at

threshold, as s→ 4m2
h, due to the cancellation between the box and triangle contributions.

This property is one of the reasons that make the large top mass limit a poor approximation

in Higgs boson pair production, necessitating the calculation of higher order corrections

with full mt dependence. It also causes problems when trying to define a K-factor as a

function of the variable z. Ordinarily, one would divide the NLO cross section by the LO

one, however this becomes ill-defined in the threshold region z → 1. In ref. [47] this problem

is circumvented by dividing by the LO cross section with kinematics shifted according to

eq. (3.17). The resulting K-factor thus matches precisely the quantity defined in eq. (3.26).

With this convention, the NLO cross section for Higgs boson pair production, up to

NLP accuracy, can be written as

z
dσhhNLP

dz
=
αs
3π

CA

(
µ2

s

)ε [
12− 6D0(z)

ε
+ 12D1(z)− 24 log(1− z)

]
σhhBorn (zs) , (6.9)

where we have extracted an explicit factor of z on the left-hand side, to match the con-

ventions adopted in ref. [47]. In the large top mass limit, eq. (6.9) reproduces the results

of ref. [47]. As in the case of single Higgs production, however, the result is much more

powerful, in that it applies to the full top mass dependence. Eq. (6.9) thus provides an

explicit analytic form of the cross section, at NLO in perturbation theory, and up to NLP

in the threshold variable (1 − z). This extends the results of ref. [55], which considered

supplementing the fixed-order cross section with threshold effects at leading power only.

Ref. [56], on the other hand, studied the systematic improvement of the large top mass

limit, by including corrections expressed as a power series in m2
h/m

2
t . The authors found

that the convergence of this expansion could be dramatically improved by factorising the

leading order cross-section with exact top mass dependence. The results of this paper

explain why this is so: indeed, we find that, to first subleading order in the threshold ex-

pansion, the NLO cross section can be completely expressed in terms of the leading-order

cross section with shifted kinematics, and with full top mass dependence.

Returning to the large top mass limit, we can go further and consider triple Higgs pro-

duction, a process for which analytic NLO corrections were presented recently in ref. [50].

If we denote the invariant mass of the triple Higgs system by M3h, and we set the MS scale

according to µ2 = M2
3h, the NLO cross section in the gluon fusion channel can be written

as [50]

M2
3h

dσhhh

dM2
3h

=
αs
2π

σhhhBorn (zs) η(z) , (6.10)

with

η(z) = 24D1(z)− 24z
(
−z + z2 + 2

)
log(1− z)

− 12(z2 + 1− z)2

1− z
log(z)− 11(1− z)3 + C

(δ)
3h δ(1− z) , (6.11)
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where C
(δ)
3h can be read off from ref. [50], and does not affect our arguments. Expanding

to NLP in (1− z), we may rewrite eq. (6.10) as

z
dσhhh

dz
=
αs
4π

CA

[
16D1(z)− 32 log(1− z) + 8 +O(1− z)

]
σhhhBorn (zs) . (6.12)

This result is indeed reproduced from eq. (3.26): implementing the scale choice as in

eq. (4.21), one can rewrite eq. (3.26) in the present case as

z
dσhhh

dz
=
αs
4π

CA

[
16− 8D0(z)

ε
+ 16D1(z)− 32 log(1− z) + 8

]
σhhhBorn (zs) ; (6.13)

extracting the finite part in the MS scheme, one finds precise agreement with eq. (6.12).

7 Vector boson pair production

In the preceding two sections, we have illustrated the application of our general expression

for the NLO K-factor in the gluon channel. In order to verify and illustrate the quark

result, eq. (4.17), in a non-trivial case, it is instructive to see how known matrix elements

in vector boson pair production can be reproduced. This calculation is also an important

illustration of the fact that our prediction, while based on power counting in the threshold

variable z, applies to the fully differential squared amplitude, and not only to the integrated

cross section. As an example, we consider di-boson production,

q(p1) + q̄(p2) → V (p3) + V (p4) , (7.1)

where V is an electroweak gauge boson. Let us start with di-photon production, the

amplitudes for which can be found in ref. [60] up to NLO, in four spacetime dimensions.

The squared LO matrix element for this process, summed and averaged over colours and

spins, is given by ∣∣AγγBorn

∣∣2 =
2e4q
Nc

t2 + u2

tu
=

4e4q
Nc

1 + cos2 θ

1− cos2 θ
, (7.2)

where eq is the electromagnetic charge of the quark. One may now consider the radiation

of an additional gluon, leading to the process

q(p1) + q̄(p2) → V (p3) + V (p4) + g(k) . (7.3)

Computing the di-photon cross section at NLO, one must include the squared Born matrix

element for the process in eq. (7.3), again summed and averaged over colours and spins. It

is given by [60]

∣∣AγγgNLO

∣∣2 =
e4q
Nc

g2sCF
s
∑

i(p1 ·ki)(p2 ·ki)
[
(p1 ·ki)2+(p2 ·ki)2

]∏
i(p1 ·ki)(p2 ·ki)

, ki ∈{p3,p4,k} . (7.4)

Our aim is to show that, up to NLP accuracy, this matrix element can be obtained by

shifting kinematics in the LO squared amplitude, as dictated by eq. (4.16). To this end,

one may rescale the gluon momentum as k → λk in eq. (7.4), and expand to next-to-leading
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power in λ, before setting λ→ 1. Next, one can parametrise the momenta in the centre of

mass frame of the V V system, as (see for example ref. [61])

p1 = p01 (1, 0, 0, 1) , p2 = p02 (1, 0, sinψ, cosψ) , k = k0 (1, 0, sinψ′, cosψ′)

p3 =

√
s2
2

(
1, βz sin θ2 sin θ1, βz cos θ2 sin θ1, βz cos θ1

)
,

p4 =

√
s2
2

(
1,−βz sin θ2 sin θ1,−βz cos θ2 sin θ1,−βz cos θ1

)
, (7.5)

where

p01 =
s+ tk
2
√
s2

, p02 =
s+ uk
2
√
s2

, k0 = − tk + uk
2
√
s2

,

cosψ = 1− s

2p01p
0
2

, cosψ′ = 1 +
tk

2p01k
0
, βz =

√
1−

4m2
V

zs
, (7.6)

and we have introduced the invariants

tk = (p1 − k)2 , uk = (p2 − k)2 , s2 = s+ tk + uk . (7.7)

Note that in these notations the threshold variable is ξ = 1 − z = 1 − s2/s. With these

definitions, we can now expand to first subleading power in the gluon energy, and set

mV = 0 for the di-photon case. The result is∣∣AγγgNLP

∣∣2 = g2sCF
s

p1 · k p2 · k
4e4q
Nc

[
1 + cos2 θ1
1− cos2 θ1

− 8 sin θ1 cos θ1 cos θ2

(1− cos2 θ1)
2

√
p1 · k p2 · k

s

]
, (7.8)

By performing the same procedure, one may easily show that the LO amplitude of eq. (7.2),

evaluated with the kinematic shifts defined in eq. (3.13), yields∣∣AγγBorn (p1+δp1,p2+δp2)
∣∣2 =

4e4q
Nc

[
1+cos2 θ1
1−cos2 θ1

− 8sinθ1 cosθ1 cosθ2
(1−cos2 θ1)2

√
p1 ·kp2 ·k
s

]
. (7.9)

We therefore see that eq. (7.8) explicitly confirms the expectations raised by eq. (4.16).

A similar exercise may be carried out for W+W− production: the NLO squared am-

plitudes for this process (again in four spacetime dimensions) may be found in ref. [61].

The Born-level squared matrix element, summed and averaged over colours and spins, is

given by ∣∣AWW
Born

∣∣2 =
1

4Nc

[
ctti F

(0)
i (s, t)− ctsi (s) J

(0)
i (s, t) + cssi (s)K

(0)
i (s, t)

]
, (7.10)

where ctti , cssi and ctsi are coefficients associated with t-channel, s-channel and interference

graphs, respectively, for a quark of flavour i, and can be found in ref. [61]. The remaining

functions of Mandelstam invariants are given by

F
(0)
i (s, t) = 16

(
ut

m4
W

− 1

)(
1

4
+
m4
W

t2

)
+ 16

s

m2
W

,

J
(0)
i (s, t) = 16

(
ut

m4
W

− 1

)(
s

4
−
m2
W

2
−
m4
W

t

)
+ 16s

(
s

m2
W

− 2 + 2
m2
W

t

)
,

K
(0)
i (s, t) = 8

(
ut

m4
W

− 1

)(
s2

4
− sm2

W + 3m4
W

)
+ 8s2

(
s

m2
W

− 4

)
. (7.11)
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Similarly, the NLO squared matrix element including the radiation of a gluon, for the qq̄

initial state, also summed and averaged over colours and spins, is given by∣∣∣AWWg
NLO

∣∣∣2 =
4παsCF
Nc

s

tkuk

[
ctti X̂i − ctsi (zs) Ŷi + cssi (zs) Ẑi

]
, (7.12)

where the functions X̂i, Ŷi and Ẑi have been obtained by rescaling the corresponding

functions Xi, Yi and Zi, given in appendix D of ref. [61], extracting the singular prefactor

−4s/(tkuk). Parametrising momenta as in eq. (7.5), one may expand each function up to

NLP in ξ = (1− z), using the same procedure as outlined above for the di-photon matrix

element. Introducing the notation ρ = m2
W /s, the results can be written as

X̂i

∣∣∣
NLP

=
32

(4ρ−1)
[
1−2ρ+(4ρ−1)cosθ1

]3
{

cos2 θ1
(
32ρ3−32ρ2+10ρ−1

)
+ cosθ1

(
96ρ4−112ρ3+70ρ2−20ρ+2

)
−16ρ4+44ρ3−34ρ2

+10ρ−1+ξ
[

cos2 θ1
(
128ρ4−96ρ3+24ρ2−2ρ

)
+cosθ1

(
32ρ3

−16ρ2+2ρ
)
+16ρ3−4ρ2

]}
− cos2 θ1

(4ρ−1)

[
192ρ−112+

20

ρ
− 1

ρ2

+ ξ
(

128ρ−96+
24

ρ
− 2

ρ2

)]
+

1

ρ2
+

12

ρ
−16+ ξ

(
2

ρ2
+

12

ρ

)
(7.13)

+
sinψ cosθ2 sinθ1[

1−2ρ+(4ρ−1)cosθ1
]3
[

cos4 θ1

(
1024ρ3−1280ρ2+640ρ−160

+
20

ρ
− 1

ρ2

)
+cos3 θ1

(
−1536ρ3+2304ρ2−1344ρ+384− 54

ρ
+

3

ρ2

)
+cos2 θ1

(
768ρ3−1344ρ2+912ρ−300+

48

ρ
− 3

ρ2

)
+cosθ1

(
−640ρ3+768ρ2−360ρ+92− 14

ρ
+

1

ρ2

)
−256ρ2+128ρ−16

]
,

Ŷi

∣∣∣
NLP

=
32sρ[

1−2ρ+(4ρ−1)cosθ1
]2
[

cosθ1(ρ+2)+2ρ2+3ρ−2

+ ξρ
(

cosθ1(4ρ−1)+5
)]

+s

{
cos2 θ1

(
96ρ−80+

18

ρ
− 1

ρ2

)
+ 8cosθ1 (−8ρ+1)−16ρ−16+

10

ρ
+

1

ρ2
+ξ

[
cos2 θ1

(
64ρ−80+

28

ρ
− 3

ρ2

)
+8cosθ1 (−4ρ+1)−16+

20

ρ
+

3

ρ2

]}
+

ssinψ cosθ2 sinθ1[
(4ρ−1)cosθ1+1−2ρ

]2
[

cos3 θ1

(
−512ρ3+768ρ2−448ρ+128− 18

ρ
+

1

ρ2

)
+ cos2 θ1

(
768ρ3−1088ρ2+656ρ−204+

32

ρ
− 2

ρ2

)
+ cosθ1

(
−384ρ3+512ρ2−280ρ+84− 14

ρ
+

1

ρ2

)
−192ρ2+64ρ−4

]
, (7.14)
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Ẑi

∣∣∣
NLP

= s2

{
cos2 θ1

(
−288ρ2+192ρ−62+

10

ρ
− 1

2ρ2

)
−24ρ−18+

4

ρ
+

1

2ρ2

+ ξ

[
cos2 θ1

(
−192ρ2+192ρ−92+

22

ρ
− 2

ρ2

)
−24ρ−36+

12

ρ
+

2

ρ2

]}
+ s2 sinψ cosθ2 sinθ1 cosθ1

(
96ρ2−80ρ+30− 6

ρ
+

1

2ρ2

)
. (7.15)

We have explicitly checked that the same results are obtained from eq. (4.16), where for

the right-hand side one must use the LO squared amplitude given in eq. (7.10), with

momenta shifted according to eq. (3.13). This is a highly non-trivial cross-check: comparing

eqs. (7.13)–(7.15) with the di-photon case given in eq. (7.8), one sees that the WW case

involves a much more complicated dependence on the opening angle θ1, and the partonic

centre of mass energy s. A similar analysis could be carried out for ZZ production [73], and

also to provide analytic information for triple vector boson production, numerical results

for which have been presented in refs. [74, 75].

8 Conclusion

In this paper, we have considered the hadro-production of an arbitrary heavy colourless

system, in both the gluon-fusion and quark-antiquark-annihilation channels, near partonic

threshold for the production of the selected final state. Our starting point is an all-order

factorisation formula for the relevant scattering amplitudes, introduced in refs. [23, 24],

given here in eq. (2.2), and valid to next-to-leading power in the threshold expansion.

Specialising this formula to NLO in the strong coupling, we have observed how the general

expression simplifies, and takes the form of a next-to-soft theorem, as derived for example

in [44–46]. This simple expression, in turn, leads to a universal form for the transition

probability, completely differential in the final state variables, and proportional to the Born-

level transition probability, computed with a specific shift for the initial parton momenta.

The result is the same for quarks and gluons (up to a trivial substitution of color factors),

and is reported in eqs. (3.14), (4.16). When the transition probability is integrated over

final state variables, one finds that the inclusive cross section for the selected process can

also be written in a simple and universal factorised form, given here in eqs. (3.26), (4.17).

More precisely, at NLO, and up to next-to-leading power in the threshold expansion, the

cross-sections can be written as a universal K-factor, multiplying the leading order cross-

section with a shifted partonic centre-of-mass energy. All these results apply regardless of

whether the leading order process is tree-level or loop-induced, and the resulting K-factors

are independent of hard scales such as heavy quark masses.

We have checked our results by reproducing known expressions for the production of

up to three Higgs bosons at NLO, in the large top mass limit. Away from this limit, our

formula provides new analytic information in the case of Higgs pair production at NLO,

where only numerical results are presently known. Furthermore, we explain the observation,

made previously in ref. [56], that the convergence of the large top mass expansion can

be improved in this process by factoring out the LO cross-section with exact top mass
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dependence. In the quark channel, we have shown how our formula is consistent with

previous results for the production of photon and W boson pairs, again at the level of

differential distributions.

The results we have presented show that, to NLP accuracy, differential and inclusive

NLO cross sections for colour-singlet final states are dramatically simpler than exact results,

and we expect that they will be very easy to implement in numerical codes, providing checks

of existing calculations, and improved approximations for differential distributions when

complete results are not available, as is the case for loop induced processes with multi-

particle electroweak final states. A detailed phenomenological analysis, including a study

of the accuracy of the NLP approximation in different processes and kinematic domains,

has been left to future work.

We emphasise that the simple universal expressions that we find at NLO can be sys-

tematically improved upon by relying on eq. (2.2): in particular, a NLO calculation of the

radiative soft function and of the radiative jet functions for quarks and gluons, which is

under way, will lead to NLP approximations for cross sections of the type studied in this

paper at NNLO level, exploring uncharted territory, in particular for processes which are

loop induced and have so far been studied predominantly in the context of effective field

theory approximations.

Beyond NLO, we expect the K factor obtained from eq. (2.5) to acquire a degree of

process dependence, and we expect the simple interpretation of the result as a kinematic

shift to receive corrections. First of all, the one-loop radiative jet functions for quarks

and gluons will differ, and the next-to-soft function will acquire spin dependence beyond

leading power. Furthermore, the exact cancellation between the next-to-soft function and

the soft-collinear amplitude, leading from eq. (2.5) to eq. (2.6), will be lost at the one-

loop level. We note however that these corrections are only sensitive to the nature of

the incoming particles, and do not depend on the hard interaction, preserving a degree of

universality of the result. What is likely to be lost is the simple geometric interpretation

in terms of a kinematic shift, displayed for example in eq. (3.14) and in eq. (4.16): this

is not surprising, given the close relation of these results to the existence of (next-to-)soft

theorems for amplitudes [44, 46, 64], which are known to break down beyond tree level.

Furthermore, we note that, at NNLO and beyond, one must also consider multiple gluon

emissions from the jets and from the next-to-soft functions. There is good reason to believe

such contributions to be universal, in the sense of eq. (2.5): in the soft case, for example,

they are known to exponentiate independently of the hard process [20, 21] . Nevertheless,

to what extent universality persists for multiple emissions can only be checked by an

explicit computation.

One may also wonder whether the property of universality persist for contributions

suppressed by two or more powers of the threshold variable (i.e. at NNLP and beyond). This

seems very unlikely: indeed, as has been known since the pioneering work of refs. [41, 42],

emissions from inside the hard interaction, starting at NNLP, are no longer dictated by

gauge invariance, which is the key ingredient leading to eq. (2.2).

Note that in this paper we considered only processes involving two coloured particles

in the Born interaction, so that colour correlations are simple, given the inclusive nature
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of the cross-section. One may wonder whether our formalism would also correctly capture

colour correlations in multiparton processes, which are much more intricate. We do not

expect additional colour structures to pose a serious problem, since their structure would

be fully encoded in the appropriate next-to-soft function, which can be formulated in terms

of webs [20, 21].

Finally, we note that the universal expressions we have derived for inclusive cross

sections are also applicable to colourless final states arising beyond the Standard Model,

in which case our results can provide a controlled approximation to estimate the size of

higher-order corrections in selected models without the need to perform calculations that

would be expensive for loop-induced processes.
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