123 research outputs found

    Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    Get PDF
    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/ startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power

    Using Emerging Technologies to Bolster Long-Term Monitoring of Wetlands

    Get PDF
    Freshwater wetlands support a disproportionately high diversity of species relative to other ecosystems and they are particularly vulnerable to climate change. Across Grand Teton and Yellowstone National Parks, wetlands represent just 3% of the landscape, yet 70% of Wyoming bird species and all native amphibians in the region use wetlands for some stage of their life. The Greater Yellowstone Inventory and Monitoring Network has monitored amphibians in wetlands since 2006 and found that over 40% of the region’s isolated wetlands are dry in years with above average temperatures and reduced precipitation. Adding novel technologies to these monitoring efforts will increase our understanding of species diversity in wetlands susceptible to drying. We outfitted three wetland sites in Grand Teton National Park with acoustic (i.e., audible and ultrasonic) monitoring technology and wildlife camera traps in summer 2016. We collected data over a four-week period to test the efficacy of automated technology for wetland monitoring. Based on preliminary results from the ultrasonic monitoring and wildlife cameras, we detected four times more species with these tools, when compared to visual surveys of amphibians alone. Additionally, automated methods allowed us to detect species over a longer time window than feasible with visual surveys. We will continue our work in 2017, using environmental DNA, acoustic monitoring, and wildlife camera traps to capture information about a broader diversity of taxa using wetlands, to expand and enrich current monitoring efforts

    Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.

    Get PDF
    Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required

    A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data

    Get PDF
    We have developed a statistical gap-filling method adapted to the specific coverage and prop-erties of observed fugacity of surface ocean CO2(fCO2). We have used this method to interpolate the Sur-face Ocean CO2Atlas (SOCAT) v2 database on a 2.5832.58 global grid (south of 708N) for 1985–2011 atmonthly resolution. The method combines a spatial interpolation based on a ‘‘radius of influence’’ to deter-mine nearby similar fCO2values with temporal harmonic and cubic spline curve-fitting, and also fits long-term trends and seasonal cycles. Interannual variability is established using deviations of observations fromthe fitted trends and seasonal cycles. An uncertainty is computed for all interpolated values based on thespatial and temporal range of the interpolation. Tests of the method using model data show that it performsas well as or better than previous regional interpolation methods, but in addition it provides a near-globaland interannual coverage

    The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development

    Get PDF
    Mammalian G9a is a histone H3 Lys-9 (H3–K9) methyltransferase localized in euchromatin and acts as a co-regulator for specific transcription factors. G9a is required for proper development in mammals as g9a(−)/g9a(−) mice show growth retardation and early lethality. Here we describe the cloning, the biochemical and genetical analyses of the Drosophila homolog dG9a. We show that dG9a shares the structural organization of mammalian G9a, and that it is a multi-catalytic histone methyltransferase with specificity not only for lysines 9 and 27 on H3 but also for H4. Surprisingly, it is not the H4–K20 residue that is the target for this methylation. Spatiotemporal expression analyses reveal that dG9a is abundantly expressed in the gonads of both sexes, with no detectable expression in gonadectomized adults. In addition we find a low but clearly observable level of dG9a transcript in developing embryos, larvae and pupae. Genetic and RNAi experiments reveal that dG9a is involved in ecdysone regulatory pathways

    Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template

    Get PDF
    The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1–2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130–220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5–3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock–induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Strawberry fields forever? Urban agriculture in developed countries: a review

    Get PDF

    ABCss: s is for smoking

    Get PDF
    corecore