29 research outputs found

    New insights into protein recommendations for promoting muscle hypertrophy

    Get PDF
    In this article, Lindsay Macnaughton and Dr Oliver Witard critique the latest information regarding athletespecific protein recommendations for promoting muscle hypertrophy

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021

    The Physics of the B Factories

    Get PDF

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Topic 3. Protein requirements and recommendations for athletes: arguments for practical recommendations

    No full text
    Protein plays an integral role in the growth and repair of tissues, making it an important part of the human diet. Protein requirements are designed to prevent deficiencies; however, athletes look to use protein as a tool for increasing adaptations to training. Therefore, we suggest that protein recommendations are more useful than proteins requirements for athletes and coaches. Challenges exist in making protein recommendations for large groups of athletes due to differences in athlete type, sport, position, goals and training. Ideally, protein recommendations should be made on an individual basis. A number of general strategies can be employed to maximize the impact of protein on training adaptations. These considerations include the amount of protein to consume, timing of protein ingestion (both throughout the day and in relation to exercise), the type of protein consumed and the impact of co-ingestion of other nutrients

    Milk protein ingestion does not enhance recovery from muscle-damaging resistance exercise in untrained males and females: a randomized controlled trial

    Get PDF
    Milk-based proteins are a common choice of post-exercise nutrition to enhance exercise recovery and adaptation. Periexercise milk protein ingestion may attenuate exercise-induced muscle damage (EIMD), which is a particular risk to untrained individuals. However, most research has been conducted with males, and due to potential sex differences in EIMD, research with both sexes is required. This parallel-group randomized controlled trial examined the impact of milk protein ingestion on recovery from EIMD. Untrained males and females performed a single bout of leg-based resistance exercise and consumed a milk protein (MILK-PRO: n = 4 males, n = 8 females) or isoenergetic control (CON: n = 4 males, n = 8 females) supplement over 4 days post-exercise (17 doses total). Maximum strength was assessed ≥3 wk pre- and 72 and 168 h post-exercise, and measures of leg circumference, range of motion, muscle soreness, pressure-pain threshold (PPT), and serum creatine kinase concentration ([CK]) were conducted pre-, immediately post-, and 24, 48, 72, and 168 h post-exercise. Resistance exercise induced mild muscle damage that was not attenuated with MILK-PRO relative to CON. Peak increases in [CK] and reductions in PPT were greater in males compared with females. Changes in other markers were comparable between sexes. We conclude that moderate resistance exercise in naïve individuals induces muscle damage without compromising muscle strength. We support sex differences in EIMD and emphasize the need for further research with both sexes. Milk protein ingestion was not beneficial for recovery from EIMD, thus alternative management strategies should be investigated. This trial was prospectively registered at ClinicalTrials.gov PRS (protocol ID: 290580A)

    Sex differences in the impact of resistance exercise load on muscle damage: A protocol for a randomised parallel group trial

    Get PDF
    Introduction Resistance training can induce skeletal muscle hypertrophy and strength gains, but is also associated with acute muscle damage, characterised by muscle soreness, impaired muscle function, and structural damage to muscle cell membranes and its components. These consequences can be detrimental to future exercise performance and dampen long-term training adaptations. Previous research has considered resistance exercise intensity as a factor in exercise-induced muscle damage (EIMD), though a clear direction of the findings has not yet been established. Further, female populations are heavily underrepresented in this field of study. Therefore, we here propose a study protocol designed to examine sex differences in the muscle damage response to resistance exercise performed with low or high loads in a population of untrained, young adults. Methods This study will employ a randomised parallel group design. Twenty-four males and 24 females will perform an acute leg-based resistance exercise session at either 30% (low-load) or 80% (high-load) of their pre-determined one-repetition maximum (1RM). Maximal leg strength will be determined by a 1RM test 3 wk before and 72 and 168 h after the exercise bout. Additionally, muscle damage will be assessed immediately before the exercise bout and immediately, 24, 48, 72, and 168 h after the exercise bout through measures of muscle soreness, limb circumference, range of motion, and serum concentrations of creatine kinase and interleukin-6. The outcomes of this trial could inform sex-specific resistance training recommendations and help bridge the sex data gap in sport and exercise science research
    corecore