77 research outputs found

    Research conference summary from the 2014 International Task Force on

    Get PDF
    OBJECTIVE: METHODS: In 2014, the Alternating Hemiplegia of Childhood Foundation hosted a multidisciplinary workshop intended to address fundamental challenges surrounding the diagnosis and management of individuals with RESULTS: Workshop attendees were charged with the following: (1) to achieve consensus on expanded diagnostic criteria to facilitate the identification of additional patients, intended to supplement existing syndrome-specific diagnostic paradigms; (2) to standardize definitions for the broad range of paroxysmal manifestations associated with AHC to disseminate to families; (3) to create clinical recommendations for common recurrent issues facing families and medical care providers; (4) to review data related to the death of individuals in the Alternating Hemiplegia of Childhood Foundation database to guide future efforts in identifying at-risk subjects and potential preventative measures; and (5) to identify critical gaps where we most need to focus national and international research efforts. CONCLUSIONS: This report summarizes recommendations of the workshop committee, highlighting the key phenotypic features to facilitate the diagnosis of possibl

    Dysfunction of axonal membrane conductances in adolescents and young adults with spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy is distinct among neurodegenerative conditions of the motor neuron, with onset in developing and maturing patients. Furthermore, the rate of degeneration appears to slow over time, at least in the milder forms. To investigate disease pathophysiology and potential adaptations, the present study utilized axonal excitability studies to provide insights into axonal biophysical properties and explored correlation with clinical severity. Multiple excitability indices (stimulus–response curve, strength–duration time constant, threshold electrotonus, current–threshold relationship and recovery cycle) were investigated in 25 genetically characterized adolescent and adult patients with spinal muscular atrophy, stimulating the median motor nerve at the wrist. Results were compared with 50 age-matched controls. The Medical Research Council sum score and Spinal Muscular Atrophy Functional Rating Scale were used to define the strength and motor functional status of patients with spinal muscular atrophy. In patients with spinal muscular atrophy, there were reductions in compound muscle action potential amplitude (P < 0.0005) associated with reduction in stimulus response slope (P < 0.0005), confirming significant axonal loss. In the patients with mild or ambulatory spinal muscular atrophy, there was reduction of peak amplitude without alteration in axonal excitability; in contrast, in the non-ambulatory or severe spinal muscular atrophy cohort prominent changes in axonal function were apparent. Specifically, there were steep changes in the early phase of hyperpolarization in threshold electrotonus (P < 0.0005) that correlated with clinical severity. Additionally, there were greater changes in depolarizing threshold electrotonus (P < 0.0005) and prolongation of the strength-duration time constant (P = 0.001). Mathematical modelling of the excitability changes obtained in patients with severe spinal muscular atrophy supported a mixed pathology comprising features of axonal degeneration and regeneration. The present study has provided novel insight into the pathophysiology of spinal muscular atrophy, with identification of functional abnormalities involving axonal K+ and Na+ conductances and alterations in passive membrane properties, the latter linked to the process of neurodegeneration

    Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy

    Get PDF
    FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein

    Alternating hemiplegia of childhood: Retrospective genetic study and genotype-phenotype correlations in 187 subjects from the US AHCF registry

    Get PDF
    Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers' questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies

    Relationships between muscle size, strength, and physical activity in adults with muscular dystrophy

    Get PDF
    © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders. Background: Muscular dystrophy (MD) is characterized by progressive muscle wasting and weakness, yet few comparisons to non-MD controls (CTRL) of muscle strength and size in this adult population exist. Physical activity (PA) is promoted to maintain health and muscle strength within MD; however, PA reporting in adults with MD is limited to recall data, and its impact on muscle strength is seldom explored. Methods: This study included 76 participants: 16 non-MD (CTRL, mean age 35.4), 15 Duchenne MD (DMD, mean age 24.2), 18 Becker's MD (BMD, mean age 42.4), 13 limb-girdle MD (LGMD, mean age 43.1), and 14 facioscapulohumeral MD (mean age 47.7). Body fat (%) and lean body mass (LBM) were measured using bioelectrical-impedance. Gastrocnemius medialis (GM) anatomical cross-sectional area (ACSA) was determined using B-mode ultrasound. Isometric maximal voluntary contraction (MVC) was assessed during plantar flexion (PFMVC) and knee extension (KEMVC). PA was measured for seven continuous days using triaxial accelerometry and was expressed as daily average minutes being physically active (TPAmins) or average daily percentage of waking hours being sedentary (sedentary behaviour). Additionally, 10 m walk time was assessed. Results: Muscular dystrophy groups had 34–46% higher body fat (%) than CTRL. DMD showed differences in LBM with 21–28% less LBM than all other groups. PFMVC and KEMVC were 36–75% and 24–92% lower, respectively, in MD groups than CTRL. GM ACSA was 47% and 39% larger in BMD and LGMD, respectively, compared with CTRL. PFMVC was associated with GM ACSA in DMD (P = 0.026, R = 0.429) and CTRL (P = 0.015, R = 0.553). MD groups were 14–38% more sedentary than CTRL groups, while DMD were more sedentary than BMD (14%), LGMD (8%), and facioscapulohumeral MD (14%). Sedentary behaviour was associated with LBM in DMD participants (P = 0.021, R = −0.446). TPAmins was associated with KEMVC (P = 0.020, R = 0.540) in BMD participants, while TPAmins was also the best predictor of 10 m walk time (P < 0.001, R2 = 0.540) in ambulant MD, revealed by multiple linear regression. Conclusions: Quantified muscle weakness and impaired 10 m walking time is reported in adults with MD. Muscle weakness and 10 m walk time were associated with lower levels of TPA in adults with MD. Higher levels of sedentary behaviour were associated with reduced LBM in DMD. These findings suggest a need for investigations into patterns of PA behaviour, and relevant interventions to reduce sedentary behaviour and encourage PA in adults with MD regardless of impairment severity

    Emerging therapies and challenges in Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a hereditary neurodegenerative disease with severity ranging from progressive infantile paralysis and premature death (type I) to limited motor neuron loss and normal life expectancy (type IV). Without disease-modifying therapies, the impact is profound for patients and their families. Improved understanding of the molecular basis of SMA, disease pathogenesis, natural history, and recognition of the impact of standardized care on outcomes has yielded progress toward the development of novel therapeutic strategies and are summarized. Therapeutic strategies in the pipeline are appraised, ranging from SMN1 gene replacement to modulation of SMN2 encoded transcripts, to neuroprotection, to an expanding repertoire of peripheral targets, including muscle. With the advent of preliminary trial data, it can be reasonably anticipated that the SMA treatment landscape will transform significantly. Advancement in presymptomatic diagnosis and screening programs will be critical, with pilot newborn screening studies underway to facilitate preclinical diagnosis. The development of disease-modifying therapies will necessitate monitoring programs to determine the long-term impact, careful evaluation of combined treatments, and further acceleration of improvements in supportive care. In advance of upcoming clinical trial results, we consider the challenges and controversies related to the implementation of novel therapies for all patients and set the scene as the field prepares to enter an era of novel therapies. Ann Neurol 2017;81:355–368
    corecore