200 research outputs found

    Herschel Spectroscopic Observations of Little Things Dwarf Galaxies

    Get PDF
    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 m,[Oi]63m, [O i] 63 m, [O iii] 88 m,and[Nii]122m, and [N ii] 122 m emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budgetmdashhigher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 m/100m/100 m, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.Peer reviewedFinal Accepted Versio

    Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis

    Get PDF
    Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.This study received funding from Novartis. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication. This work was supported by grants from Foundation Fighting Blindness Career Development Award CDGE-0621-0809-RAD (SR), Foundation Fighting Blindness project program award PPA-0123-0841-UCL (SR and SdB), Retinitis Pigmentosa Fighting Blindness, Fight for Sight UK (RP Genome Project GR586), Ghent University Special Research Fund (BOF20/GOA/023) (EDB and BL); EJP RD Solve-RET EJPRD19-234 (EDB, BL, SB, CR, FC, and SR). EDB (1802220N) and BL (1803816N) are FWO Senior Clinical Investigators of the Research Foundation Flanders (FWO). EDB, BL, SB, FC, and SR are members of ERN-EYE (Framework Partnership Agreement No. 739534)

    Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

    Get PDF
    Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959

    Lipid-Based Nutrient Supplements Increase Energy and Macronutrient Intakes from Complementary Food among Malawian Infants.

    Get PDF
    BACKGROUND: Low intakes of good-quality complementary foods (CFs) contribute to undernutrition and consequently negatively affect health, growth, and development. Lipid-based nutrient supplements (LNSs) are designed to ensure dietary adequacy in micronutrients and essential fatty acids and to provide some energy and high-quality protein. In populations in which acute energy deficiency is rare, the dose-dependent effect of LNSs on CF intakes is unknown. OBJECTIVE: The objective of this study was to evaluate the difference in energy and macronutrient intakes from CF between a control (no supplement) group and 3 groups that received 10, 20, or 40 g LNS/d. METHODS: We collected repeated interactive 24-h dietary recalls from caregivers of rural Malawian 9- to 10-mo-old infants (n = 748) to estimate dietary intakes (LNS and all non-breast-milk foods) of energy and macronutrients and their dietary patterns. All infants were participating in a 12-mo randomized controlled trial to investigate the efficacy of various doses of LNS for preventing undernutrition. RESULTS: Dietary energy intakes were significantly higher among infants in the LNS intervention groups than in the control group (396, 406, and 388 kcal/d in the 10-, 20-, and 40-g LNS/d groups, respectively, compared with 345 kcal/d; each pairwise P < 0.05), but no significant differences were found in energy intakes between groups who were administered the different LNS doses (10 g LNS/d compared with 20 g LNS/d: P = 0.72; 10 g LNS/d compared with 40 g LNS/d: P ≥ 0.67; 20 g LNS/d compared with 40 g LNS/d: P = 0.94). Intakes of protein and fat were significantly higher in the LNS intervention groups than in the control group. No significant intergroup differences were found in median intakes of energy from non-LNS CFs (357, 347, and 296 kcal/d in the 10-, 20-, and 40-g LNS/d groups, respectively, compared with 345 kcal/d in the control group; P = 0.11). CONCLUSION: LNSs in doses of 10-40 g/d increase intakes of energy and macronutrients among 9- to 10-mo-old Malawian infants, without displacing locally available CFs. This trial was registered at clinicaltrials.gov as NCT00945698

    Green efficiency performance analysis of the logistics industry in China: based on a kind of machine learning methods

    Get PDF
    This paper aims to analyze the green efficiency performance of the logistics industry in China’s 30 provinces from 2008 to 2017. We first evaluate the green efficiency of the logistics industry through the non-directional distance function (NDDF) method. Then, we use the functional clustering method funHDDC, which is one of the popular machine learning methods, to divide 30 provinces into 4 clusters and analyze the similarities and differences in green efficiency performance patterns among different groups. Further, we explore the driving factors of dynamic changes in green efficiency through the decomposition method. The main conclusions of this paper are as follows: (1) In general, the level of green efficiency is closely related to the geographical location. From the clustering results, we can find that most of the eastern regions belong to the cluster with higher green efficiency, while most of the western regions belong to the cluster with lower green efficiency. However, the green efficiency performance in several regions with high economic levels, such as Beijing and Shanghai, is not satisfactory. (2) Based on the analysis of decomposition results, the innovation effect of China’s logistics industry is the most obvious, but the efficiency change still needs to be improved, and technical leadership should be strengthened. Based on these conclusions, we further propose some policy recommendations for the green development of the logistics industry in China

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).</jats:p
    corecore