22 research outputs found

    Structural bases for the interaction of frataxin with the central components of iron–sulphur cluster assembly

    Get PDF
    Reduced levels of frataxin, an essential protein of as yet unknown function, are responsible for causing the neurodegenerative pathology Friedreich's ataxia. Independent reports have linked frataxin to iron–sulphur cluster assembly through interactions with the two central components of this machinery: desulphurase Nfs1/IscS and the scaffold protein Isu/IscU. In this study, we use a combination of biophysical methods to define the structural bases of the interaction of CyaY (the bacterial orthologue of frataxin) with the IscS/IscU complex. We show that CyaY binds IscS as a monomer in a pocket between the active site and the IscS dimer interface. Recognition does not require iron and occurs through electrostatic interactions of complementary charged residues. Mutations at the complex interface affect the rates of enzymatic cluster formation. CyaY binding strengthens the affinity of the IscS/IscU complex. Our data suggest a new paradigm for understanding the role of frataxin as a regulator of IscS functions

    Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics

    Get PDF
    Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics

    Metformin inhibits proliferation and migration of glioblastoma cells independently of TGF-β2

    No full text
    To this day, glioblastoma (GBM) remains an incurable brain tumor. Previous research has shown that metformin, an oral anti-diabetic drug, may decrease GBM cell proliferation and migration especially in brain tumor initiating cells (BTICs). As transforming growth factor 2 (TGF-(2)) has been reported to promote high-grade glioma and is inhibited by metformin in other tumors, we explored whether metformin directly interferes with TGF-(2)-signaling. Functional investigation of proliferation and migration of primary BTICs after treatment with metformin+/-TGF-(2) revealed that metformin doses as low as 0.01mM metformin thrice a day were able to inhibit proliferation of susceptible cell lines, whereas migration was impacted only at higher doses. Known cellular mechanisms of metformin, such as increased lactate secretion, reduced oxygen consumption and activated AMPK-signaling, could be confirmed. However, TGF-(2) and metformin did not act as functional antagonists, but both rather inhibited proliferation and/or migration, if significant effects were present. We did not observe a relevant influence of metformin on TGF-(2) mRNA expression (qRT-PCR), TGF-(2) protein expression (ELISA) or SMAD-signaling (Western blot). Therefore, it seems that metformin does not exert its inhibitory effects on GBM BTIC proliferation and migration by altering TGF-(2)-signaling. Nonetheless, as low doses of metformin are able to reduce proliferation of certain GBM cells, further exploration of predictors of BTICs' susceptibility to metformin appears justified

    A PCBP1–BolA2 chaperone complex delivers iron for cytosolic [2Fe–2S] cluster assembly

    No full text
    Hundreds of cellular proteins require iron cofactors for activity, and cells express systems for their assembly and distribution. Molecular details of the cytosolic iron pool used for iron cofactors are lacking, but iron chaperones of the poly(rC)-binding protein (PCBP) family play a key role in ferrous ion distribution. Here we show that, in cells and in vitro, PCBP1 coordinates iron via conserved cysteine and glutamate residues and a molecule of noncovalently bound glutathione (GSH). Proteomics analysis of PCBP1-interacting proteins identified BolA2, which functions, in complex with Glrx3, as a cytosolic [2Fe-2S] cluster chaperone. The Fe-GSH-bound form of PCBP1 complexes with cytosolic BolA2 via a bridging Fe ligand. Biochemical analysis of PCBP1 and BolA2, in cells and in vitro, indicates that PCBP1-Fe-GSH-BolA2 serves as an intermediate complex required for the assembly of [2Fe-2S] clusters on BolA2-Glrx3, thereby linking the ferrous iron and Fe-S distribution systems in cells
    corecore