163 research outputs found

    Exercise imagery and its correlates in older adults

    Get PDF
    Objectives\ud The purpose of the present study was to test a structural model examining the interrelationships between exercise imagery, self-reported exercise behaviour and well-being in older adults.\ud \ud Design\ud Cross-sectional survey.\ud \ud Method\ud Participants were 499 older Greek adults (50.10% males) aged between 51 and 84 years (M age = 57.31; SD = 5.52) who completed questionnaires measuring exercise imagery use, exercise behaviour, subjective vitality, and physical self-worth. The relationship between these variables was tested with a structural model based on the applied model of imagery use for exercise (Munroe-Chandler & Gammage, 2005).\ud \ud Results\ud Energy imagery positively predicted exercise behaviour and subjective vitality, and appearance and technique imagery positively predicted physical self-worth.\ud \ud Conclusions\ud These results indicate older adults engage in different types of imagery to motivate themselves to exercise and improve their well-being, thus implying that the content of imagery interventions should be specifically tailored to the outcomes older adults wish to realise for interventions to be effective.\ud \u

    Properties of pain assessment tools for use in people living with stroke: systematic review

    Get PDF
    Replaced AM with VoR 2020-08-11.Background: Pain is a common problem after stroke and is associated with poor outcomes. There is no consensus on the optimal method of pain assessment in stroke. A review of the properties of tools should allow an evidence based approach to assessment. Objectives: We aimed to systematically review published data on pain assessment tools used in stroke, with particular focus on classical test properties of: validity, reliability, feasibility, responsiveness. Methods: We searched multiple, cross-disciplinary databases for studies evaluating properties of pain assessment tools used in stroke. We assessed risk of bias using the Quality Assessment of Diagnostic Accuracy Studies tool. We used a modified harvest plot to visually represent psychometric properties across tests. Results: The search yielded 12 relevant articles, describing 10 different tools (n=1106 participants). There was substantial heterogeneity and an overall high risk of bias. The most commonly assessed property was validity (eight studies) and responsiveness the least (one study). There were no studies with a neuropathic or headache focus. Included tools were either scales or questionnaires. The most commonly assessed tool was the Faces Pain Scale (FPS) (6 studies). The limited number of papers precluded meaningful meta-analysis at level of pain assessment tool or pain syndrome. Even where common data were available across papers, results were conflicting e.g. two papers described FPS as feasible and two described the scale as having feasibility issues. Conclusion: Robust data on the properties of pain assessment tools for stroke are limited. Our review highlights specific areas where evidence is lacking and could guide further research to identify the best tool(s) for assessing post-stroke pain. Improving feasibility of assessment in stroke survivors should be a future research target.https://doi.org/10.3389/fneur.2020.0079211pubpu

    A new method to infer vegetation boundary movement from \u27snapshot\u27 data

    Get PDF
    Global change may induce shifts in plant community distributions at multiple spatial scales. At the ecosystem scale, such shifts may result in movement of ecotones or vegetation boundaries. Most indicators for ecosystem change require timeseries data, but here a new method is proposed enabling inference of vegetation boundary movement from one \u27snapshot\u27 (e.g. an aerial photograph or satellite image) in time. The method compares the average spatial position of frontrunners of both communities along the vegetation boundary. Mathematical analyses and simulation modeling show that the average frontrunner position of retreating communities is always farther away from a so-called optimal vegetation boundary as compared to that of the expanding community. This feature does not depend on assumptions about plant dispersal or competition characteristics. The method is tested with snapshot data of a northern hardwood-boreal forest mountain ecotone in Vermont, a forest-mire ecotone in New Zealand and a subalpine treeline-tundra ecotone in Montana. The direction of vegetation boundary movement is accurately predicted for these case studies, but we also discuss potential caveats. With the availability of snapshot data rapidly increasing, the method may provide an easy tool to assess vegetation boundary movement and hence ecosystem responses to changing environmental conditions. © 2012 The Authors. Ecography © 2012 Nordic Society Oikos

    Tephrochronology and its application: A review

    Get PDF
    Tephrochronology (from tephra, Gk ‘ashes’) is a unique stratigraphic method for linking, dating, and synchronizing geological, palaeoenvironmental, or archaeological sequences or events. As well as utilising the Law of Superposition, tephrochronology in practise requires tephra deposits to be characterized (or ‘fingerprinted’) using physical properties evident in the field together with those obtained from laboratory analyses. Such analyses include mineralogical examination (petrography) or geochemical analysis of glass shards or crystals using an electron microprobe or other analytical tools including laser-ablation-based mass spectrometry or the ion microprobe. The palaeoenvironmental or archaeological context in which a tephra occurs may also be useful for correlational purposes. Tephrochronology provides greatest utility when a numerical age obtained for a tephra or cryptotephra is transferrable from one site to another using stratigraphy and by comparing and matching inherent compositional features of the deposits with a high degree of likelihood. Used this way, tephrochronology is an age-equivalent dating method that provides an exceptionally precise volcanic-event stratigraphy. Such age transfers are valid because the primary tephra deposits from an eruption essentially have the same short-lived age everywhere they occur, forming isochrons very soon after the eruption (normally within a year). As well as providing isochrons for palaeoenvironmental and archaeological reconstructions, tephras through their geochemical analysis allow insight into volcanic and magmatic processes, and provide a comprehensive record of explosive volcanism and recurrence rates in the Quaternary (or earlier) that can be used to establish time-space relationships of relevance to volcanic hazard analysis. The basis and application of tephrochronology as a central stratigraphic and geochronological tool for Quaternary studies are presented and discussed in this review. Topics covered include principles of tephrochronology, defining isochrons, tephra nomenclature, mapping and correlating tephras from proximal to distal locations at metre- through to sub-millimetre-scale, cryptotephras, mineralogical and geochemical fingerprinting methods, numerical and statistical correlation techniques, and developments and applications in dating including the use of flexible depositional age-modelling techniques based on Bayesian statistics. Along with reference to wide-ranging examples and the identification of important recent advances in tephrochronology, such as the development of new geoanalytical approaches that enable individual small glass shards to be analysed near-routinely for major, trace, and rare-earth elements, potential problems such as miscorrelation, erroneous-age transfer, and tephra reworking and taphonomy (especially relating to cryptotephras) are also examined. Some of the challenges for future tephrochronological studies include refining geochemical analytical methods further, improving understanding of cryptotephra distribution and preservation patterns, improving age modelling including via new or enhanced radiometric or incremental techniques and Bayesian-derived models, evaluating and quantifying uncertainty in tephrochronology to a greater degree than at present, constructing comprehensive regional databases, and integrating tephrochronology with spatially referenced environmental and archaeometric data into 3-D reconstructions using GIS and geostatistics

    Low temperature phase of methane

    No full text
    The phase behaviour of methane at temperatures below 20°K is still not understood. There is recent evidence for a second phase transition at 8°K, in addition to the well known transition at 20.4°K. This second transition requires a long time to reach equilibrium. In our experiment, the nuclear magnetic resonance signal of the methane protons was monitored for a period of many hours at 1.2°K, in order to; determine whether a slow phase change occurred in the approach to equilibrium. This change would manifest itself in the width of the resonance line, which is sensitive to the local environment of the proton, and thus able to provide information about the crystal structure. No definite time variation of line width was observed. The line width increased by 15% from 4.2°K to 1.2°K. The second moment of the line also rose sharply as the temperature increased, indicating an increasing contribution to the spin-spin interaction from intra-molecular broadening. An approximate model yielded a correlation time for the intra-molecular term of the order of a microsecond. Significant differences between different methane samples indicate that sample preparation is important, and that the above results were for samples in some sort of metastable phase.Science, Faculty ofPhysics and Astronomy, Department ofGraduat

    The ecology of the sheep tick, Ixodes ricinus

    No full text

    The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus

    No full text
    corecore