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A new method to infer vegetation boundary movement from 
‘snapshot’ data

Maarten B. Eppinga, Carolyn A. Pucko, Mara Baudena, Brian Beckage and Jane Molofsky

M. B. Eppinga (m.b.eppinga@uu.nl) and M. Baudena, Dept of Environmental Science, Copernicus Inst. of Sustainable Development, Utrecht 
Univ., NL-3508 TC Utrecht, the Netherlands. MBE also at: Dept of Plant Biology, Univ. of Vermont, 63 Carrigan Drive, Burlington, VT 05405, 
USA. – C. A. Pucko, B. Beckage and J. Molofsky, Dept of Plant Biology, Univ. of Vermont, 63 Carrigan Drive, Burlington, VT 05405, USA.

Global change may induce shifts in plant community distributions at multiple spatial scales. At the ecosystem scale, such 
shifts may result in movement of ecotones or vegetation boundaries. Most indicators for ecosystem change require time-
series data, but here a new method is proposed enabling inference of vegetation boundary movement from one ‘snapshot’ 
(e.g. an aerial photograph or satellite image) in time. The method compares the average spatial position of frontrunners 
of both communities along the vegetation boundary. Mathematical analyses and simulation modeling show that the aver-
age frontrunner position of retreating communities is always farther away from a so-called optimal vegetation boundary 
as compared to that of the expanding community. This feature does not depend on assumptions about plant dispersal 
or competition characteristics. The method is tested with snapshot data of a northern hardwood-boreal forest mountain 
ecotone in Vermont, a forest-mire ecotone in New Zealand and a subalpine treeline-tundra ecotone in Montana. The 
direction of vegetation boundary movement is accurately predicted for these case studies, but we also discuss potential 
caveats. With the availability of snapshot data rapidly increasing, the method may provide an easy tool to assess vegetation 
boundary movement and hence ecosystem responses to changing environmental conditions.

A growing body of research reports changes in species  
distributions, attributed to recent global change (Araújo and 
New 2007, Thuiller et al. 2008). On the global and regional 
scale, there is a general trend of species’ ranges moving  
toward the poles and to higher elevations (Hickling et  al. 
2006). Also, at the ecosystem scale global change may induce 
changes in species distributions (Brown et al. 1997). These 
latter changes are clearly visible in ecosystems that contain 
spatial vegetation boundaries, because boundaries may shift 
if the changed conditions favor one community over the 
other (Eppinga et  al. 2009a). Examples include moving  
ecotones (Allen and Breshears 1998) and spatial spread of 
better-adapted invasive species (Kriticos et al. 2003).

The most straightforward method to monitor ecosystem-
scale vegetation boundary movement would be the analysis 
of a timeseries of images (from Earth Observation data,  
i.e. satellite-derived or aerial photographs) (Cohen and  
Lara 2003). Application of this method, however, requires 
the availability of data from the past, which becomes  
increasingly scarce as the length of the time series increases  
or for more remote regions of the globe. Another complica-
tion is that seasonal or meteorological variation between 
images may lead to an inconsistent classification of vegeta-
tion (Adams et al. 1995, Weiers et  al. 2004, Barbier et  al. 
2006). This problem becomes more prominent when the 
number of images in the timeseries increases (Adams et al. 

1995, Weiers et  al. 2004, Barbier et  al. 2006). Therefore, 
other approaches are needed as well.

Some more recent approaches aim to predict future 
boundary movement by analyzing current properties of  
the vegetation boundary. These approaches rely on tech-
niques developed in statistical physics. Percolation theory 
(Bak 1996, Pascual and Guichard 2005), for example, 
enables quantification of competitive pressure in an area 
(Milne et al. 1996, Gastner et al. 2009). For application of 
this method, however, it is necessary to make assumptions 
about the size of individual interaction neighborhoods  
for the plant communities involved in order to predict 
whether communities are likely to decline in cover or  
be able to expand into new areas (Milne et  al. 1996). 
Another method has shown that the advancement of an 
expanding plant community front can be accurately pre-
dicted by using the physical analogy of a substance propa-
gating into an unstable medium (O’Malley et al. 2009a, b). 
Although this method does not require specific assump-
tions about the size of individual interaction neighbor-
hoods (O’Malley et al. 2009b), it focuses on describing the 
properties of an expanding community front, rather than 
identifying differences in spatial structure between the 
retreating front and the expanding front. In this study,  
we aim to develop an approach that: 1) enables predictions 
of future vegetation boundary movement from a single 
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snapshot in time (Milne et al. 1996) and 2) does not require 
specific assumptions about the sizes of plant communities’ 
interaction neighborhoods (O’Malley et al. 2009b), which 
are often unknown and difficult to quantify (Hastings  
et al. 2005). In addition, the development of the method 
includes a statistical testing procedure to formalize predic-
tions on vegetation boundary movement based on empirical 
snapshot data.

We develop the method by analytical analyses and by  
analyzing simulations using spatially explicit competition 
models. A number of spatially explicit competition models 
have been developed to mimic the formation and movement 
of vegetation boundaries (Molofsky et  al. 2001, Eppinga 
et  al. 2006, Eppstein and Molofsky 2007). Testing the  
predictions of competition models with empirical data,  
however, is difficult and not often performed (Eppstein and 
Molofsky 2007, Tilman 2007). One potential problem is 
that the formation and movement of vegetation boundaries 
may be driven by edaphic factors (Crawford and Gosz  
1982, Wiens et al. 1985) or by scale-dependent spatial feed-
backs between vegetation and its abiotic environment 
(Rietkerk et al. 2004) rather than competitive interactions. 
However, in a variety of ecosystems, in particular those  
under relatively benign conditions, the formation and  
movement of vegetation boundaries may be primarily driven  
by competitive interactions (Clarke and Hannon 1971, 
Snow and Vince 1984, Streever and Genders 1997, Peltzer 
2001). In this study we focus on this latter type of vegetation 
boundary. Although not as restrictive as other methods, our 
use of snapshot data to predict future boundary movement 
requires a number of assumptions too. It is assumed that the 
current vegetation distribution is reflecting competitive 
interactions between communities over a longer time period 
(i.e. decades). Also, it is assumed that vegetation boundary 
movement is relatively slow as compared to fluctuations  
in environmental and meteorological conditions.

To meet these assumptions when applying the method  
to real ecosystems, we select snapshots of vegetation bound-
aries that: 1) consist of two discrete communities that are 
characterized by plants with a relatively long lifespan (mostly 
trees and shrubs); 2) have been described in the literature, 
meaning that the direction of vegetation boundary move-
ment is known; 3) are considered to be primarily driven by 
competitive interactions. First, we consider the upward 
movement of the northern hardwood-boreal forest ecotone 
in Vermont (Beckage et  al. 2008), where successful tree 
establishment is limited by competition (Kupfer and Cairns 
1996, Pucko et  al. unpubl.). Second, we consider a stable 
forest-mire ecotone in New Zealand (investigated in Agnew 
et al. 1993, using a snapshot from Google Earth). Both types 
of plant community are able to modify their habitat in a way 
that limits growth of the other community (Eppinga et al. 
2009a). Third, we consider the advance of trees in a subalpine 
treeline-tundra ecotone in Montana (Zeng and Malanson 
2006), where tree establishment in the tundra is suppressed 
by the presence of vascular plants (Moir et al. 1999).

Description of the method

The method is explained in three subsections. We first ana-
lyze vegetation boundary movement analytically, yielding 

the basic premise of our method that does not depend on 
specific competition or dispersal characteristics. In this  
first subsection, we consider a relatively simple model for 
vegetation spread, namely unidirectional spread in the  
Eden model (Barabási and Stanley 1995), which enables 
analytical treatment. Although there is a vast literature on 
the spatio-temporal dynamics of advancing fronts (Durrett 
and Levin 1994, Barabási and Stanley 1995, Van Saarloos 
2003), these studies tend to focus on the movement rate of 
the advancing community, whereas the movement rates  
of both the advancing and retreating fronts are crucial for  
the basic premise of our method.

In the second subsection, we will relax some of the  
simplifying assumptions that are made in the unidirec-
tional Eden model, and test whether the basic premise of  
our method still holds. In this section, a more complicated 
model is used that can no longer be solved analytically. 
Hence we resort to numerical analyses in this subsection.

Finally, the third subsection describes the statistical  
procedures that can be used to test hypotheses on vegetation 
boundary movement with Earth Observation derived  
vegetation boundary maps.

Analytical analysis of vegetation boundary 
movement

In the following we consider vegetation boundaries in  
model lattices, in which each cell can be occupied by one 
individual of a particular plant community. A spatial vegeta-
tion boundary is the border between two areas that are  
each dominated by a different plant community. Within  
the vegetation boundary zone, individuals of both commu-
nities occur. If the two communities are entirely separated 
spatially, each community consists of a single homogeneous 
patch (Fig. 1a). This particular spatial configuration maxi-
mizes the conditional probability that a random site within 
the interaction neighborhood of an individual of commu-
nity i is occupied by another individual of community i.  
In other words, the perceived density of a community  
(calculated as the mean frequency of conspecifics occurring 
within the interaction neighborhood, following Milne et al. 
1996) is maximized in this way. We therefore use the term 
‘optimal boundary position’ for the position where the 
boundary between vegetation communities occurs for this 
spatial configuration (Fig. 1a).

Thus, for any spatial configuration, the optimal bound-
ary position can be calculated based on the densities of  
both communities in the entire lattice: if both communities 
occupy 50% of the cells (as in Fig. 1b), the optimal vegeta-
tion boundary occurs exactly in the middle of the lattice 
when all individuals of one community would be moved  
to one side of the lattice. Thus, Fig. 1a shows the result of 
this ordering process for the spatial configuration shown in 
Fig. 1b, yielding the optimal boundary position for this spa-
tial configuration. A more formal definition of the optimal 
vegetation boundary position is provided in Supplementary 
material Appendix 1.

In practice, communities are usually not entirely sepa-
rated, because patches of both communities are filled with 
‘islands’ of individuals (i.e. cells) of the competitor commu-
nity (Fig. 1b). This means that there is a vegetation boundary 
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zone in which individuals of both communities are present 
(exemplified for a single row of a vegetation boundary in  
Fig. 1c). As a result, the mean position of each community 
front (calculated as the mean of the positions of the front-
runner for each row, following O’Malley et  al. 2009a, b)  
lies beyond the optimal boundary position (Fig. 1b).

We now examine how the distance between each com-
munity front and the optimal boundary develops over  
time. We assume that community C1 is taking over commu-
nity C2. That is, community C1 expands from left to  
right, creating a vegetation boundary zone (Fig. 1c). In the 
following, we will refer to the horizontal distance of the  
vegetation boundary zone as the width of the boundary,  
and to the vertical distance as its length. To enable analyti-
cal treatment of the model, we first consider a simplified  
version of the well-known contact process model (Durrett 
and Levin 1994), namely unidirectional spread in the  
Eden model (Barabási and Stanley 1995). More specifically, 
for n cells surrounding a C1 individual there is a probability 
p per timestep (which can vary between 0 and 1) that a C2 
individual gets replaced by offspring of this C1 individual. 
The only transition that can thus occur in the model is 
C2 → C1, meaning that community C1 can expand into the 
C2 community as if it were open space. Further, it is  
important to note that we do not consider the influence  
of propagule pressure. More specifically, the colonization 
probability of a C2 cell does not increase when multiple  
C1 individuals establish within the neighborhood; the  
probability of being replaced by a C1 individual is either 0 
(no C1 individuals in the interaction neighborhood) or p  
(the number of C1 individuals in the interaction neighbor-
hood is  1). This simplification enables us to focus on 
frontrunner dynamics when calculating community expan-
sion. To further enable analytical treatment (i.e. remove  
spatial correlation effects between rows, Snyder and Nisbet 
2000), we consider the colonization process only to occur in 
the horizontal direction. These assumptions oversimplifying 
competition will be relaxed in the next subsection (Numerical 
simulations of vegetation boundary movement).

Thus, each timestep there is a probability p that a new 
frontrunner colonizes the cell that is n cells in front of  
the current frontrunner. Averaged over the entire length of 
the vegetation boundary, this means that these events  
will cause an average advance per timestep of the C1 com-
munity front of pn cells. For each row of the vegetation 
boundary, we know that if a colonization of n cells ahead 
does not occur (probability 1 2 p), there is still a probability 
p that the cell that is n 2 1 cells ahead of the frontrunner  
gets colonized. The average advance per timestep of the com-
munity fronts due to these events is then (1 2 p) p (n 2 1) 
cells. Summation of all possible expansion events in this 
manner yields the average advance per timestep of the  
C1 front:
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In which A1 indicates the advance rate of the C1 community 
front. Note that the text above described the cases for  
j  0 (advance of n cells) and j  1 (advance of n 2 1 cells) as 
expressed in Eq. 1. The expansion process always leads to  

50% cover per community
Maximal perceived density

of conspecifics 

Optimal boundary
position

(a)

50% cover per community
Black community is closer

to optimal boundary

Mean position
frontrunners:
front boundary

(b)

Positions of
frontrunners

Distance white
community front

from optimal
boundary

Distance black
community front
from optimal
boundary

(c)

Formation new C2
‘islands’ (F2) 

Boundary movement
(A1) 

Boundary movement
(R2)

Boundary zone
(N1 + N2) 

Figure 1. Explanation of the method. (a) If both communities are 
entirely separated spatially, the average density of conspecifics 
within the interaction neighborhood is maximized. The position of 
the vegetation boundary for this case is called the optimal vegeta-
tion boundary position. (b) The actual position of a front is deter-
mined by the mean position of the frontrunners. Note that the 
actual front position is always farther into the competitor commu-
nity than the optimal boundary position. (c) Processes governing 
vegetation boundary movement. The dotted cells indicate sites  
that are colonized by the expanding community (in black, referred 
to as C1 in the main text) in the current timestep. On the right  
side of the boundary, new frontrunners establish due to coloniza-
tion, which moves the expanding community front to the right at  
a rate A1. Another effect of this movement is that islands of the 
retreating community (in white, referred to as C2 in the main  
text) are becoming part of the boundary zone, at a rate F2. On the 
left side of the boundary, replacement of the frontrunners of  
the retreating community moves the position of this community 
front to the right as well, at a rate R2. The width of the vegetation 
boundary zone is comprised by the total number of C1 individuals 
in the boundary zone (N1) and the number of C2 individuals within 
this zone (N2).
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in which N t
2 is the distance of the C1 community front to  

the optimal boundary at time t. Figure 2a illustrates that the 
analytical description of C2 island formation (Eq. 2, 3) cor-
responds well with the results of numerical simulations  
of the unidirectional Eden model. The simulations show  
that the C2 community develops toward an equilibrium 
number of C2 islands per row, N̂2. As noted above, N̂2 is the 
number of islands occurring in the C1 community (Fig. 1b) 
and this is thus the equilibrium distance of the C1 commu-
nity to the optimal vegetation boundary. N̂2 is obtained  
by solving Eq. 3 to equilibrium (meaning N 2

t 1 1 5 N t
2), 

yielding:

N̂
F
p2
2

	
(4)

Thus, in the above, we have derived the development and 
final equilibrium of the distance to the optimal boundary  
for the expanding C1 community (Eq. 2, 3; Fig. 2a).

The two community fronts would have an equal distance 
to the optimal boundary if both had the same number of 
individuals within the vegetation boundary zone. We know 
the number of C2 individuals within the boundary zone  
at equilibrium (N̂2 as defined in Eq. 4), and this number 
should be equaled by the number of C1 individuals within 
the boundary zone. This would yield a total width of the

boundary zone of 2
2 2ˆ .N
F
p2   We will now show that a

vegetation boundary of this particular width can never  
be stable, independent of the size of the interaction  
neighborhood.

First, we calculate the density of C2 individuals when they 
become part of the boundary, namely at the C1 community 
front (on the right side in Fig. 1c). This density is given  
by the number of C2 islands formed, F2, divided by the  
total number of both C1 and C2 individuals that become  
part of the vegetation boundary, which is governed by A1:

ε2
0 2

1


F
A 	

(5)

In which e0
2 indicates the density of C2 individuals at time 

t  0, specifying one particular point in time at which a set 
of C2 islands is formed, which we will refer to as a cohort of 
C2 islands. Over time, the density of this C2 cohort will 
decline, because more and more C2 individuals become 
replaced by C1 individuals. Because each timestep a fraction 
p of the remainder of the cohort will be disappearing, the 
density of this cohort after m timesteps is described by:

ε2
2

1

1m mF
A

p ( )
	

(6)

Note that the dynamics of each cohort are the same, and that 
the C1 community front advances at a constant rate (Eq. 1). 
Therefore, we can infer the time since establishment of  
each cohort from its distance to the current position of  
the C1 community front: the further away (i.e. to the left in 
Fig. 1c) a C2 individual is from the C1 community front, the 
longer it has been part of the vegetation boundary. Thus,  
we can define an average distance x between a cohort formed 

an equilibrium width of the vegetation boundary zone.  
This means that the advance of the C1 community front  
on one side is compensated by an equally large retreat of  
the C2 front on the other side (retreat of the C2 front is indi-
cated with R2 in Fig. 1c). C2 individuals become part of the 
vegetation boundary zone at the C1 community front.  
When n  1, individuals of C1 can establish more than one 
cell ahead of the current frontrunner position, which leads  
to ‘islands’ of C2 individuals that are then part of the 
boundary zone (Fig. 1c). Note that an island refers to a  
single cell in the lattice. We introduce F2 to indicate the  
rate of island formation, meaning the number of C2 indi-
viduals per timestep that become part of the vegetation 
boundary. Note that if there was only one colonization event 
per row per timestep, F2 would simply be given by A1 2 1. 
Thus, we can use Eq. 1 as a starting point, but need to cor-
rect for the possibility of multiple colonization events per 
row per timestep. With an increasing number of C1 coloniza-
tion events, the number of C2 islands formed decreases. This 
yields the following equation:
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(2)

In Eq. 2, j indicates the number of cells that the new  
frontrunner advances beyond the current C1 front position 
(note that the colonizer needs to advance at least two cells  
to create a C2 island in between), and k is the number of 
colonization events per row. The first two factors indicate  
the probability of k cells getting colonized in the current 
timestep. The third factor indicates how many islands will  
be formed due to these events. However, k colonization 
events within j cells may be achieved via multiple different 
spatial configurations. This is accounted for by the fourth 
factor in Eq. 2, which is the multiplicity factor from a two-
state model as used in statistical physics (Schroeder 2000), 
but correcting for the fact that the frontrunner advancing  
j cells is limiting the degrees of freedom. In Eq. 2, correc-
tion for multiple colonization effects per row is achieved  
by considering k  1, and by the third factor in Eq. 2, which 
describes the number of islands that are formed. A more 
detailed explanation of the derivation of Eq. 2 is given in 
Supplementary material Appendix 2.

We introduce N2 to indicate the average number of  
C2 islands per row of the vegetation boundary, meaning  
that these (and only these) islands determine the distance of 
the competing C1 community to the optimal vegetation 
boundary. The dynamics of N2 are governed by the forma-
tion of C2 islands and by their disappearance. The formation 
of C2 islands is given by F2 as derived above. Because  
every C2 individual within the vegetation boundary has a 
probability p per timestep to disappear, the number of  
C2 individuals that disappears each timestep is pN2. Both 
processes can thus be written as:

N N F pN F p Nt t t t
2

1
2 2 2 2 21      ( ) 	 (3)
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Equation 8 shows the decline in density of C2 individuals 
along the width of the vegetation boundary. We can now 
insert the width of the vegetation boundary for the case  
that both communities would have an equal distance to the 
optimal boundary, and calculate the resulting equilibrium 
C2 density, D̂2, herein:

D̂
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(9)

Note all terms in Eq. 9 have been expressed analytically as 
functions of the colonization probability p and size of the 
interaction neighborhood n in previous Eq. 1–8. Figure 2b 
illustrates that D2 within the vegetation boundary zone  
can never (i.e. not for any combination of n  1 and p) 
equal or exceed 1/2. This means that the distance to the 
optimal boundary for the retreating community will always 
become larger than that of the expanding community.  
Thus, this analysis reveals that the expansion process of a 
plant community is reflected by a shorter distance to the 
optimal boundary as compared to the retreating plant com-
munity, independent of the assumed size of the interaction 
neighborhood (n) or probability of establishment (p). We 
will now examine whether this observation holds if some  
of the assumptions used above are relaxed. Therefore, we 
will consider a model system in which: 1) both communi-
ties can reproduce and thus replace each other 2) both  
horizontal and vertical spread are included 3) the types of 
interaction neighborhoods are more realistic and 4) the 
types and sizes of interaction neighborhood can be set  
different for the two communities. As noted in the begin-
ning of the section, this more complicated model system 
can no longer be solved analytically. We will therefore con-
tinue our theoretical analyses using numerical simulations 
for a range of parameter values and different functional 
model forms.

Numerical simulations of vegetation boundary 
movement

The interaction neighborhood of plant communities  
depends on competition and dispersal processes, which are 
often difficult to quantify. For example, deriving the disper-
sal neighborhood to parameterize mathematical models  
has proven to be a major challenge in modeling invasions  
of exotic species (Hastings et  al. 2005). In the following, 
however, we will show that also in a more complicated com-
petition model the key result derived above holds regardless 
of the size of the interaction neighborhood.

In all simulations, the invading front of a competitively 
stronger community propagates into the area occupied by a 

(b)

(a)

0.2

0.4

0.6

0.8

0
0.1
0.2
0.3
0.4

200
400
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800

1000
n

p

D
2

Figure 2. Analyses of vegetation boundary development and  
stability in the unidirectional Eden model. (a) Analytical results 
for the distance (quantified as N2 in the main text) of the expan
ding community front to the optimal vegetation boundary corre-
spond well with numerical simulations. This distance is determined 
by the number of retreating community individuals that are pres-
ent in the vegetation boundary zone. Black lines indicate analytical 
solutions (described by Eq. 2 and 3 in the main text), gray lines 
indicate numerical simulations. Results are shown for two types of 
interaction neighborhoods and two establishment probabilities. 
Simulations were run on a lattice of 512 (vertical)  3584  
(horizontal) cells. (b) If it is assumed that both community fronts 
have an equal distance to the optimal boundary, then stability  
of this spatial configuration requires that the density of the retreat-
ing community, D2, equals 1/2. However, plotting Eq. 9 presented 
in the main text reveals that D2 will always be smaller than 1/2 in 
this situation, meaning that the vegetation boundary will always 
develop into a situation where the retreating community front  
is farther away from the optimal boundary than the expanding 
community front.

m timesteps ago and the current C1 community front  
position:
x mA 1 	 (7)

Inserting Eq. 7 into Eq. 6, we obtain the spatial proportional 
density of C2 as a function of distance to the current C1 com-
munity front position:

ε2
2
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1 1x
F
A

p
x
A( ) ( ) 

	
(8)
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In which gij is the competition coefficient determining  
the negative effect of community j on community i, dj  
the mortality rate of community j and Ki is the carrying 
capacity of community i. In Eq. 12, the factor G t

i determines 
the growth rate of community i, and it is described by 
(Eppstein and Molofsky 2007):
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In which F t
i is the relative frequency of community i at 

timestep t, i.e. the density of the community that is being 
experienced relative to its carrying capacity. Because the 
effect of one individual on its surroundings may depend  
on community type, community densities are weighed by 
means of the competition coefficients. Thus, we can write for 

community i: F
Ki

t i i i i
t

i

≡
γ ρ, , , as used in Eq. 13. Since each cell

can only be occupied by a single individual, overshoot  
needs to be prevented in the model by making the growth 
rate of a community dependent on interspecific interactions. 
More specifically, growth of a community is negatively 
affected by increasing growth potential of competitor  
communities (Eppstein and Molofsky 2007). In Eq. 13,   
H t

i  is the quality of a habitat for colonization by commu-
nity i. For brevity, we refer to H t

i as ‘fitness’, defined as:
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In which bi is a density-independent fitness component and 
ai,j is a coefficient representing (positive or negative) species 
interaction feedback, which relates the density of commu-
nity j to the fitness of plant community i (note that the sum-
mation includes intraspecific feedback, i  j). Combining 
Eq. 12, 13 and 14 then leads to the following discrete time 
integro-difference equation:

weaker community (following O’Malley et  al. 2009a, b). 
Again, we use a lattice-based model in which each cell can  
be occupied by a single individual of a particular plant  
community. Each timestep, a cell can become occupied  
by an individual of the same or another plant community. 
Transition probabilities depend on the competition with 
other individuals within the interaction neighborhood.  
This stochastic competition model was first introduced by 
Eppstein and Molofsky (2007). If the model lattice is large 
enough, the density of community i in the next time step, 
rt11

i,i , can be approximated by the transition probability 
toward this community
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Where S is the total number of vegetation communities in 
the system (here we only consider S  2), b is a parameter 
determining the intensity of disturbance, creating a fraction 
of cells in the lattice devoid of vegetation in the next time
step, ri is the potential density that community i could reach 
the next timestep in the absence of disturbance and dyna
mics of other plant communities, and rMAX is the maxi-
mum density of individuals that can be achieved in the 
lattice in the absence of any kind of stress or disturbance 
(here rMAX ≡ 1). It is important to note that the perceived 
density of community i depends on the size of the inter
action neighborhood of this community. This is indicated  
by the double subscripts in Eq. 10, with rt

i,i representing  
the density of plant community i that occurs within the 
interaction neighborhood of plant community i (i.e. the 
density of community i as perceived by community i). 
Different sizes and types of interaction neighborhoods can 
be considered. These neighborhood-dependent community 
densities can thus be turned into a spatially explicit equation 
by defining the following convolution integral:

ρ ′ ′ ′
Ω

i j
t

i j
tx k x x f x dx, ( ) ( ) ( )∫ 

	
(11)

Where rt
i,j (x) is the density of community j as perceived by 

community i at location x at time t, W is the model domain, 

ki(x 2 x ′) is the interaction neighborhood of community i, 
and f t

j is the frequency of community j in the lattice, which 
indicates presence (1) or absence (0) of individuals of  
community j for each cell of the lattice. In this study, we 
define k using the negative exponential, Gaussian and fat-
tailed kernels (Supplementary material Appendix 3), and we 
also consider four and eight cell interaction neighborhoods.

In Eq. 10, the potential density is described by a logistic 
growth function that includes intra- and interspecific com-
petition (Eppstein and Molofsky 2007):

The non-spatial parameters in most analyses are set to 
mimic the standard spatially explicit two-species competition 
model, of which the spatial dynamics are well known (Bolker 
et al. 2003). Our point here, however, is to see how these well 
known spatial dynamics are reflected in the distance of the two 
vegetation communities to the optimal boundary over time. 
Starting a simulation with both communities entirely sepa-
rated, there are three possible outcomes (Bolker et al. 2003).

First, individuals of both communities may expand into 
the other community’s area (Fig. 3a). The strongest front 
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Figure 3. Different types of boundary dynamics are reflected by the distances of community fronts to the optimal boundary position  
and the density profile. (a–c) Mixing boundaries are reflected by the faster expanding community (in black) being closest to the optimal 
boundary, and a relatively constant non-zero density in the density profile. (d–f ) Stable boundaries are reflected by both communities’ 
fronts being similarly close to the optimal boundary, and a consistent trend in the density profile. (g–i) Moving boundaries are reflected  
by the expanding community being closest to the optimal boundary, and a consistent trend in the density profile. Simulations were run  
on lattices of 512 by 512 cells, using the 8-neighbors interaction neighborhood (results for other interaction neighborhoods are presented 
in Supplementary material Appendix 3). Parameter values were set as follows: b  0, d1  d2  0.1, b1  b2  1, K1  K2  1, g11  g22  1; 
(a–c) g12  0.75, g21  0.65; (d–f ) g12  1.5, g21  1.5; (g–i) g12  0.75, g 21  0.25.

propagates most rapidly (Fig. 3b), meaning that this com-
munity increases in cover (and also the vegetation boundary 
moves in the same direction as the expanding community 
front). The weaker community, however, does not go extinct, 
meaning that the communities mix throughout the lattice. 
Due to this mixing effect, the vegetation boundary will  
eventually disappear and both communities will be present 
in the entire lattice (Fig. 3a). Persistence of the weakest  
community might be inferred from the density across the 
lattice, because the community densities are relatively con-
stant along the vegetation boundary zone (Fig. 3c). Mixing 
occurs when both communities experience similar inter
specific competition that is lower than the experienced 
intraspecific competition.

Second, the vegetation boundary may be stable, meaning 
that neither community is expanding into the other com-
munity’s area (Fig. 3d). In the absence of an environmental 
gradient, this situation occurs in the model when both  
communities experience similarly stronger interspecific com-
petition than intraspecific competition. This lack of bound-
ary movement is reflected by the distance to the optimal 

boundary not being significantly different between commu-
nities (Fig. 3e) and the density profile showing a consistent 
trend along the vegetation boundary (Fig. 3f ).

Third, one community can expand if it experiences con-
siderably less interspecific competition than the other  
community (Fig. 3g). This type of boundary movement is 
reflected by the expanding community consistently having 
its front closest to the optimal boundary (Fig. 3h). Together 
with a consistent trend of the density profile along the  
vegetation boundary (Fig. 3h, i), these observations reflect 
competitive exclusion of the weaker community. Thus,  
the simulations show that movement of the vegetation 
boundary can be detected at any particular moment in  
time, because the front of the expanding community is sig-
nificantly closer to the optimal boundary at any moment 
than the front of the contracting community (Fig. 3h).

The analytical approach in the previous section consid-
ered equilibrium distances to the optimal boundary. An 
important observation in the model simulations is that the 
retreating community front is also farther away from the 
optimal boundary when community fronts are still far away 
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of frontrunners of both community types, and considering  
the mean difference in relative distance to the optimal 
boundary:
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More specifically, we used a bootstrap technique (Efron  
and Tibshirani 1993) to estimate d and its standard devia-
tion. We generated 100 000 bootstrap replicates to estimate 
the mean of d and its standard error (which is given by  
the standard deviation of d within the bootstrap replicates, 
Efron and Tibshirani 1993), using a random permutation 
function as implemented in Matlab (ver. 7.13, Mathworks 
2011; Eppinga et al. 2010).

Whether the mean value of d differed significantly from  
0 was determined by the fraction of the bootstrap samples  
that had an index value of 0 or the opposite sign of d  
(Fox 2008, Carvalho et al. 2010). For example, if a mean d 
value was calculated to be 1.0, and only two percent of all 
bootstrap replicates had an index value that was 0 or nega-
tive, the conclusion was that d was significantly positive, 
with a p-value of 0.02. This procedure can be written in 
equation form as:
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In which H() again depicts the Heaviside function, di the 
index value of the ith bootstrap replicate, d

–
 the mean index 

value of all bootstrap replicates and n the total number  
of bootstrap replicates. Based on the assumptions of a one-
sample t-test, the variance in x→T,1 2 x→T,2, together with the 
sample size (i.e. the length of the vegetation boundary in  
the image) can also be used to calculate the power that a 
particular image provides. More specifically, for the case in 
which x→T,1 2 x→T,2  0, power is calculated as:
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In which erf () is the error function, tcrit defines the desired 
significance of the t-test, t is the effect size (the difference 
between distances of the community fronts to the optimal 
boundary), and s2 the variance. It is important to note  
that this analysis comprises a retrospective power analysis. 
This retrospective power analysis can only provide useful 
additional information to the t-test if the power analysis  
is done for an a priori determined effect size (Thomas 1997). 
Together with the observed variance in an image, the power 
can then be calculated. Based on the model simulations  
in this study, we used an effect size of x→T,1 2 x→T,2 5 0.2, 
which was approximately the smallest difference between  
an expanding and a retreating front as observed in the  
model simulations. Further, we set as a criterion that  
the 95% confidence intervals around the front positions  
of the two communities should not overlap, meaning 

from reaching their equilibrium distance (Fig. 3). Almost 
immediately after model initialization, the clear pattern of 
community front distances emerges (Fig. 3). This suggests 
that the method can also be used in situations in which the 
vegetation boundary width is still in a transient state. In  
real ecosystems this situation is likely to occur.

We further verified that these simulation results were  
consistent for communities with varying levels of competi-
tive strength (determined by the g coefficients), for different 
functional model forms in which communities also have 
complex feedback interactions (determined by the a  
coefficients), and for communities with varying sizes of com-
monly used interaction neighborhoods (determined by k) 
(Supplementary material Appendix 3). Although competi-
tive strength, feedbacks and the sizes of the interaction 
neighborhood of both communities all influence rates  
of front advance and retreat (Supplementary material 
Appendix 3), the front of the expanding community is closer 
to the optimal boundary than the retreating front at any par-
ticular moment in time in all situations (Supplementary 
material Appendix 3).

Statistical analyses

The spatial positions of community frontrunners not only 
yield a mean community front position, but also its standard 
deviation. This enables statistical testing of whether the two 
community fronts differ in their distance to the optimal 
boundary. Also, it is possible to calculate the statistical power 
that a particular snapshot provides for this test, which we 
will now explain.

Along a vegetation boundary with a length of y individu-
als, the position of the y frontrunners of community i is 
determined as follows:
  x x xi f i O , 	 (16)

In which x→f,i indicates the spatial positions of frontrunners,  
x→O the optimal boundary position (which is the same for  
all y elements in the vector x→O) and x→i encompasses the  
distances of the frontrunners of community i to the  
optimal boundary. The frequency distribution of x→i is typi-
cally positively skewed, but the distribution becomes close  
to normal when log-transformed (O’Malley et  al. 2009b). 
Here, we use log(x 1 1) transformation, and ensure that  
negative positions (i.e. frontrunners that are behind the opti-
mal vegetation boundary) have the same weight as positive 
positions by using the Heaviside function. More specifically, 
the distances of frontrunners to the optimal boundary are 
transformed as follows:
  x H x xT i i i, log  2 1 1( )( ) ( ) 	

(17)

in which x→T,i represents the vector of transformed front
runner positions of community i and H() is the Heaviside  
function. As noted above, frontrunner positions, and  
hence distances to the optimal boundary within a commu-
nity front are correlated, and can thus not be considered to 
be independent observations. This hampers direct employ-
ment of conventional statistical tests. To address this prob-
lem, we used a randomization technique considering pairs  
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highly aggregated (Fig. 5b). This was similar to the model 
simulations of stable boundaries, which also showed the 
relatively low degree of mixing as compared to moving or 
mixing vegetation boundaries (Fig. 3). Indeed, analysis of 
the community fronts showed that both communities  
were close to the optimal boundary, without a significant 
difference between the fronts (Fig. 5b). Examination of  
the density profile (Supplementary material Appendix 5) 
also showed a pattern consistent with that of a stable 
boundary as observed in model simulations (Fig. 3) and the 
power analysis revealed that the number of frontrunner 
observations was sufficient (Table 1). These results were  
in compliance with previous research describing this  
vegetation boundary as being stable (Agnew et al. 1993). In 
this particular case, the boundary is possibly maintained 
either by fire (Mark and Smith 1975), or by a particular 
species of the mire community, manuka tree Leptospermum 
scoparium, a mire species that grows vigorously close to the 
ecotone, especially after long periods without fire (Agnew 
et  al. 1993). Some scattered stands of Leptospermum also 
seem to occur on the open part of the mire (Fig. 5a), as  
also described for the pakihi studied by Agnew et  al.  
(1993). The occurrence of Leptospermum may hamper tree 
expansion onto the mire (Agnew et al. 1993), a shift that  
is frequently observed in European boreal mires, probably 
due to recent climate change (Eppinga et al. 2009a).

Example 3: tree advancement in a subalpine  
treeline-tundra ecotone (Montana, USA)

Historical records suggest that the subalpine treeline in 
Glacier National Park (Montana) has advanced into adja-
cent tundra at higher elevations during the 19th century 
(Bekker 2005). Zeng and Malanson (2006) provide an 
image of the leading edge of a treeline that expanded more 
recently (Fig. 6a). By analyzing this image, however, we 
reached an opposite conclusion: the treeline front was  
much farther from the optimal boundary than the tundra 
front (Fig. 6a). This suggested that the tundra front is 
expanding into the subalpine tree community (Fig. 6a). A 
likely cause for the discrepancy between the observed result 
and our prediction was that only the leading edge of the 
vegetation boundary was included in the image. The eco-
tone between the subalpine forest and tundra communities 
extends further into the forest than was captured in the 
image with tundra patches present at lower elevations. These 
tundra patches may also be changing composition toward 
that of subalpine meadows or, eventually, to subalpine  
forest (G. P. Malanson pers. comm.). Analyses of model 
simulations that considered the entire vegetation boundary 
(Zeng and Malanson 2006) yielded results that were consis-
tent with the subalpine treeline advancing into the tundra 
community (Fig. 6b, c). However, when a snapshot cap-
tured only the leading edge of this vegetation boundary 
region from these model simulations, the result incorrectly 
suggested the advance of tundra (Fig. 6d). Hence, the  
wrong prediction made from the real system image may 
have been related to an incomplete representation of the 
vegetation boundary.

tcrit  2.807. This power test is of particular relevance to 
images in which no significant difference in distance to the 
optimal boundary is found between two communities. In 
this case, the power test can be used to test whether the lack 
of a significant difference could be due to a limited number 
of observations (i.e. length of the vegetation boundary in 
the image).

Application to Earth Observation derived 
boundary maps

Example 1: upward movement of a northern 
hardwood-boreal forest ecotone (Vermont, USA)

The ecotone on the Vermont mountains separates the  
northern hardwood community (sugar maple Acer  
saccharum, American beech Fagus grandifolia, yellow birch 
Betula alleghaniensis) present on lower elevations from the 
boreal forest community (red spruce Picea rubens, balsam  
fir Abies balsamea, montane paper birch Betula papyrifera  
var. cordifolia) found on higher elevations (Beckage  
et al. 2008). Since 1962, this ecotone has shifted ~ 100 m 
upward, coinciding with a regional temperature increase of 
1.1°C (Beckage et al. 2008). In other words, the northern 
hardwood community has been expanding at the expense  
of the boreal forest community. We analyzed a satellite 
image from Camels Hump (Fig. 4; see Supplementary  
material Appendix 4 for image processing details), one of 
the mountains that was studied by Beckage et  al. (2008),  
by selecting six rectangular frames oriented so that the  
vegetation boundaries in these frames were (approximately) 
perpendicular to the mountain slope (Fig. 4). For all frames, 
the northern hardwood community was significantly closer 
to the optimal boundary (Fig. 4b–f, Table 1), which cor-
roborated field observations of this community expanding. 
The density profiles of the frames (Supplementary material 
Appendix 5) looked most similar to that of an advancing 
boundary, meaning that the boreal forest may become 
excluded entirely at lower elevations. However, the density 
profiles were not as clear as in model simulations meaning 
that the possibility of a mixing boundary cannot be excluded 
yet. This was in compliance with the results presented in 
Beckage et al., which show a decrease of the boreal forest at 
lower elevations though complete exclusion has not yet been 
observed (Beckage et al. 2008).

Example 2: a stable forest-mire ecotone  
(New Zealand)

The forest-mire ecotone at the edge of so-called pakihis 
(shrubby mire openings in forested peatlands) in New 
Zealand has been identified as a stable boundary (Agnew 
et  al. 1993). Because the original study used a transect 
approach and did not provide an image of the system, we used 
Google Earth to obtain an image close to the field site des
cribed in Agnew et al. (1993) (Fig. 5a, see Supplementary 
material Appendix 4 for image processing details). From 
this image, it was evident that both communities were 
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Figure 4. Analyses of the vegetation boundary between northern hardwood (black) and boreal forest (white) on Camels Hump, a  
mountain in Vermont (USA, 44°19′N, 72°53′W). (a) False color image (Quickbird, Satellite Imaging Corporation, Houston, TX).  
(b) Classified image, gray patches are not considered in the analyses, because these cells indicate either an elevation below 650 m  
(at the edges the image), where another community dominates (Supplementary material Appendix 4), or rock outcrops higher on  
the mountain. (c–h) Selecting six frames in which the vegetation boundary is approximately perpendicular to the slope, the northern  
hardwood front is consistently closer to the optimal boundary than the boreal forest front (see Table 1 for test statistics).

This example highlights the importance of the snapshot 
encompassing a representative part of the vegetation bound-
ary. This can be tested by examining the density of the  
two communities across the image. If the image contains a 
large enough part of the vegetation boundary, the densities 

of the two communities converge to a constant value near 
the edges of the image, indicating that the outcome of the 
analysis is not strongly affected by selecting a smaller  
or larger image (see Supplementary material Appendix 5  
for details).
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Discussion

The method developed in this study suggests that future 
spatial vegetation boundary movement can be predicted 
based on a single snapshot in time. Previously developed 
methods based on percolation theory require specific 
assumptions about the interaction neighborhoods of plant 
species (Milne et al. 1996, Gastner et al. 2009), which may 
be unknown and difficult to quantify (Hastings et al. 2005). 
Other approaches focused on properties of the expanding 
community (O’Malley et al. 2009a, b), rather than differ-
ences in spatial structure between expanding and retreating 
community fronts. Analytical analyses and model simula-
tions confirmed that the method presented here does  
not rely on specific assumptions about the interaction 
neighborhood (Eq. 9; Fig. 2b, 3; Supplementary material 
Appendix 3) or the specific formulation of the interactions 
between the vegetation communities (Supplementary  
material Appendix 3).

The models that were used to derive our method assume 
that the distribution of vegetation communities is only 
determined by direct and indirect local competitive inter
actions. Application of the method to Earth Observation 
derived vegetation boundary maps showed that the method 
could accurately predict vegetation boundary movement, 
suggesting that the method can still be used if the model 
assumptions are somewhat relaxed. We assumed constant 
parameter values in most model simulations, but even when 
environmental fluctuations were included the method still 
accurately described boundary dynamics over longer peri-
ods of time (Supplementary material Appendix 3). Further 
testing will be needed, however, to assess under which  
conditions spatial vegetation patterns are sufficiently driven 
by local species interactions to infer future movement  
based on a snapshot of that pattern. Other factors that  
could drive the spatial vegetation patterns include edaphic 
factors (Wiens et  al. 1985), feedbacks that change  
from positive to negative with increasing spatial scale 
(Eppinga et al. 2009b), herbivory (Silliman et al. 2005) and  
long-distance dispersal processes (Shigesada et  al. 1995) 
possibly leading to the formation of satellite populations 

Table 1. Statistical analyses of the vegetation boundaries in the case studies presented in Fig. 4, 5 and 6. 

Image XT,1* XT,2* p-value Conclusion

Northern hardwood – boreal forest ecotone
Camels hump 1 (XT,1: boreal forest, XT,2: hardwoods) 2.2 (0.2) 0.5 (0.3)  0.00001 hardwoods advance
Camels hump 2 (XT,1: boreal forest, XT,2: hardwoods) 3.7 (0.1) 2.5 (0.2) 0.00001 hardwoods advance
Camels hump 3 (XT,1: boreal forest, XT,2: hardwoods) 3.0 (0.2) 2.3 (0.2) 0.0019 hardwoods advance
Camels hump 4 (XT,1: boreal forest, XT,2: hardwoods) 3.9 (0.04) 3.3 (0.2) 0.00001 hardwoods advance
Camels hump 5 (XT,1: boreal forest, XT,2: hardwoods) 1.7 (0.2) 0.9 (0.3) 0.0078 hardwoods advance
Camels hump 6 (XT,1: boreal forest, XT,2: hardwoods) 3.7 (0.1) 3.1 (0.1) 0.00021 hardwoods advance

Forest-mire ecotone
Pakihi (XT,1: forest, XT,2: open mire) 0.13 (0.1) 0.005 (0.1) 0.41 stable boundary  

(power d  0.2:  0.99)
Subalpine treeline-tundra ecotone

Subalpine treeline-tundra, frame a (XT,1: tundra, XT,2: treeline) 3.6 (0.1) 5.4 (0.1)  0.00001 tundra advances
Subalpine treeline-tundra, frame b (XT,1: tundra, XT,2: treeline) 5.8 (0.01) 5.4 (0.02) 0.00001 treeline advances
Subalpine treeline-tundra, frame c (XT,1: tundra, XT,2: treeline) 5.9 (0.03) 4.4 (0.08) 0.00001 treeline advances
Subalpine treeline-tundra, frame d (XT,1: tundra, XT,2: treeline) 5.1 (0.2) 5.3 (0.5)  0.00001 tundra advances

*XT,i is the transformed measure for the distance of the community front to the optimal boundary, as explained in the main text.

Figure 5. (a) Snapshot from Google Earth (43°50′40″S, 
169°04′44″E) of a vegetation boundary between forest (black)  
and mire (white) in New Zealand. The vegetation boundaries in 
this type of ecosystem appear to be stable, either through fire  
or through vigorous growth of Leptospermum scoparium at the  
vegetation boundary. (b) There is no significant difference  
between the communities in their distance to the optimal bound-
ary position (see Table 1 for test statistics). Only the optimal 
boundary position is shown, which overlaps with the community 
front positions.
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Figure 6. Snapshots (Earth Observation derived boundary maps and models) of a vegetation boundary between the subalpine treeline 
(black) and tundra (white) communities in Glacier National Park, Montana (USA) (taken from Zeng and Malanson 2006). (a) In contrast 
to field observations, the snapshot (derived by Zeng and Malanson (2006) from an ADAR image) suggests advance of the tundra into the 
alpine treeline. (b–c) Snapshots from model simulations by Zeng and Malanson (2006) suggest that the treeline is advancing at the expense 
of the tundra, which agrees with field observations. (d) Performing the analysis on a subset of the vegetation boundary shown in (b) yields 
an opposite conclusion on the vegetation boundary movement. Hence, the erroneous prediction from the Earth Observation derived 
boundary map may be due to an incomplete representation of the vegetation boundary (see Table 1 for test statistics).

(Moody and Mack 1988). The basic premise of our method 
is less likely to hold when one or several of the above factors 
drive the observed vegetation pattern. Similar to the 
approach followed in this study, a promising starting point 
for future studies would be to test the method in systems in 
which the vegetation boundary movement has been 
described in previous studies. This approach would provide 
a rather concrete test of the importance of local species 
interactions (which are at the core of competition models) 
with empirical data. Deriving concrete predictions from 
competition models that can be tested with empirical data is 
generally difficult to do and not often performed (Eppstein 
and Molofsky 2007, Tilman 2007). Further testing of  
the method would benefit from application to timeseries 
data, meaning that timeseries data would still be needed in 
the testing stage. An interesting avenue to pursue further  
in this stage would be to examine whether the method  
could also be used to assess the velocity of boundary move-
ment in addition to the movement direction. Once the con-
ditions for successful application of the method have been 
identified, the challenges involved in the generation of  
timeseries could be circumvented. Under these conditions, 
the method presented here would provide a relatively easy  
way to predict future vegetation boundary movement.

Although consistent vegetation classification is less chal-
lenging for a single snapshot as compared to a timeseries of 
images (Adams et al. 1995, Weiers et al. 2004, Barbier et al. 
2006), there are also potential caveats in classifying a  
single snapshot. The vegetation patterns on the Earth 
Observation derived boundary maps will depend on the 
pixel size of the image. It is important that the pixel size is 
smaller than the typical dispersal distance of the two vegeta-
tion communities involved, so that community islands in 
the vegetation boundary zone can be noticed. In this study, 
pixel size for the forest-mire and alpine treeline-tundra eco-
tones was approximately 1 by 1 m and for the northern 
hardwood-boreal forest ecotone 10 by 10 m. These pixel 
sizes are small when compared to the typical dispersal  
kernels of tree species (Clark et al. 1999), which dominate 
the expanding communities in our case studies.

Another point of attention is that misclassification of  
vegetation communities can still occur in a single image. 
Remote sensing techniques, however, can yield probabilities 
of a pixel belonging to a certain class (Lees and Ritman 
1991). Rather than assuming a perfect classification when 
calculating frontrunner positions, classification probabili-
ties could be used to calculate a weighed frontrunner posi-
tion. For example, the frontrunner of a community in a 
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Barabási, H.-L. and Stanley, H. E. 1995. Fractal concepts in surface 
growth. – Cambridge Univ. Press.

Barbier, N. et  al. 2006. Self organized vegetation patterning as  
a fingerprint of climate and human impact on semi-arid  
ecosystems. – J. Ecol. 94: 537–547.

Beckage, B. et  al. 2008. A rapid upward shift a forest ecotone  
during 40 years of warming in the Green Mountains of  
Vermont. – Proc. Natl Acad. Sci. USA 105: 4197–4202.

Bekker, M. F. 2005. Positive feedback between tree establishment 
and patterns of subsubalpine forest advancement, Glacier 
National Park, Montana, USA. – Arct. Antarct. Alp. Res. 37: 
97–107.

Bolker, B. M. et  al. 2003. Spatial dynamics in model plant  
communities: what do we really know? – Am. Nat. 162:  
135–142.

Brown, J. H. et  al. 1997. Reorganization of an arid ecosystem  
in response to recent climate change. – Proc. Natl Acad. Sci. 
USA 94: 9729–9733.

Carvalho, L. M. et  al. 2010. Disturbance influences the  
outcome of plant–soil biota interactions in the invasive Acacia 
longifolia and in native species. – Oikos 119: 1172–1180.

Clark, J. S. et al. 1999. Seed dispersal near and far: patterns across 
temperate and tropical forests. – Ecology 80: 1475–1494.

Clarke, L. D. and Hannon, N. J. 1971. The mangrove swamp  
and salt marsh communities of the Sydney district III. Plant 
growth in relation to salinity and waterlogging. – J. Ecol.  
58: 351–369.

Cohen, M. C. L. and Lara, R. J. 2003. Temporal changes of  
mangrove vegetation boundaries in Amazonia: application of 
GIS and remote sensing techniques. – Wetl. Ecol. Manage. 11: 
223–231.

Crawford, C. S. and Gosz, J. R. 1982. Desert ecosystems: their 
resources in space and time. – Environ. Conserv. 9: 181–196.

Durrett, R. and Levin, S. A. 1994. Stochastic spatial models: a 
user’s guide to ecological applications. – Phil. Trans. R. Soc. B 
343: 329–350.

Efron, B. and Tibshirani, R. J. 1993. An introduction to the  
bootstrap. – Chapman and Hall.

Eppinga, M. B. et  al. 2006. Accumulation of local pathogens:  
a new hypothesis to explain exotic plant invasions. – Oikos 
114: 168–176.

Eppinga, M. B. et  al. 2009a. Linking habitat modification to  
vegetation patterns and catastrophic shifts in bogs. – Plant 
Ecol. 200: 53–68.

Eppinga, M. B. et  al. 2009b. Nutrients and hydrology indicate  
the driving mechanisms of peatland surface patterning. – Am. 
Nat. 173: 803–818.

Eppinga, M. B. et  al. 2010. Resource contrast in patterned  
peatlands increases along a climatic gradient. – Ecology 91: 
2344–2355.

Eppstein, M. J. and Molofsky, J. 2007. Invasiveness in plant  
communities with feedbacks. – Ecol. Lett. 10: 253–263.

Fox, J. 2008. Applied regression analysis and generalized linear 
models, 2nd ed. – Sage Publications.

Gastner, M. T. et  al. 2009. Transition from connected to frag-
mented vegetation across an environmental gradient: scaling 
laws in ecotone geometry. – Am. Nat. 174: E23–E39.

Hastings, A. et al. 2005. The spatial spread of invasions: new devel-
opments in theory and evidence. – Ecol. Lett. 8: 91–101.

Hickling, R. et  al. 2006. The distributions of a wide range of  
taxonomic groups are expanding polewards. – Global  
Change Biol. 12: 450–455.

Kriticos, D. J. et  al. 2003. Climate change and the potential  
distribution of an invasive alien plant: Acacia nilotica ssp.  
indica in Australia. – J. App. Ecol. 40: 111–124.

Kupfer, J. A. and Cairns, D. M. 1996. The suitability of montane 
ecotones as indicators of global climatic change. – Prog. Phys. 
Geogr. 20: 253–272.

particular row of the boundary may be much farther away 
from the optimal vegetation boundary than the second indi-
vidual of that community in the same row. If the frontrun-
ner pixel, however, has a very low probability of having been 
classified correctly, the actual frontrunner position in that 
row would be corrected to a position closer to the optimal 
boundary. Note that this procedure would be very similar  
to the averaged probability used in the theoretical section  
of this paper, which is an appropriate approach provided  
that the number of observations is sufficient (Fig. 2a).

Our findings could be especially useful for monitoring 
and predicting ecosystem responses to global change 
(Supplementary material Appendix 3). Due to global change, 
many vegetation boundaries are moving or are expected to 
move during the coming century (Hickling et  al. 2006).  
For example, mountain ecotones are largely climate depen-
dent, meaning that the projected increase in global tempera-
ture may change competitive interactions in a way that  
leads to accelerated upward movement of these ecotones 
(Beckage et al. 2008). Also, for some invasive species, there is 
a lag phase between establishment and expansion (Shigesada 
et al. 1995, Hastings et al. 2005). One possible cause that 
can trigger expansion is changing environmental conditions 
that favor the invader (Kriticos et  al. 2003). Of particular 
concern are the projected increases in extreme events and 
climatic variability (Meehl et al. 2007) that may cause more 
frequent ecosystem disturbances and trigger invasive species 
expansion (Seabloom et al. 2003).

The increasing availability of snapshot data, aerial photo-
graphs and satellite imagery (e.g. through Google Earth), 
offers a great potential for monitoring ecosystem responses 
to global change. This study suggests that it may even be  
possible to predict future ecosystem changes from a single 
snapshot in time. It is our opinion that this method deserves 
further application to Earth Observation derived vegetation 
boundary maps, as it provides a concrete test for widely used 
competition models and it may develop into an easy tool  
for quickly predicting how community distributions are 
moving in response to changes in environmental conditions.

Acknowledgements – The authors would like to thank G. P. Malanson, 
J. Van de Koppel, M. E. Eppstein and J. B. Wilson for discussions. 
The research of MBE and JM was funded by grant no. USDA– 
NRI 20006-03645 and a USDA Hatch fund awarded to JM.

References

Adams, J. B. et  al. 1995. Classification of multispectral images 
based on fractions of endmembers: application to land-cover 
change in the Brazilian Amazon. – Remote Sens. Environ.  
52: 137–154.

Agnew, A. D. Q. et al. 1993. A vegetation switch as the cause of  
a forest/mire ecotone in New Zealand. – J. Veg. Sci. 4:  
273–278.

Allen, C. D. and Breshears, D. D. 1998. Drought-induced shift of a 
forest–woodland ecotone: rapid landscape response to climate 
variation. – Proc. Natl Acad. Sci. USA 95: 14839–14842.

Araújo, M. B. and New, M. 2007. Ensemble forecasting of species 
distributions. – Trends Ecol. Evol. 22: 42–47.

Bak, P. 1996. How nature works: the science of self-organized 
criticality. – Copernicus Press.



635

Rietkerk, M. et al. 2004. Self organized patchiness and catastrophic 
shifts in ecosystems. – Science 305: 1926–1929.

Schroeder, D. V. 2000. An introduction to thermal physics.  
– Addison–Wesley.

Seabloom, E. W. et al. 2003. Invasion, competitive dominance, and 
resource use by exotic and native California grassland species. 
– Proc. Natl Acad. Sci. USA 100: 13384–13389.

Shigesada, N. et al. 1995. Modeling stratified diffusion in biologi-
cal invasions. – Am. Nat. 146: 229–251.

Silliman, B. R. et  al. 2005. Drought, snails, and large-scale die- 
off of southern U.S. salt marshes. – Science 310: 1803–1806.

Snow, A. A. and Vince, S. W. 1984. Plant zonation in an Alaskan 
salt marsh. II. An experimental study of the role of edaphic 
conditions. – J. Ecol. 72: 669–684.

Snyder, R. E. and Nisbet, R. M. 2000. Spatial structure and  
fluctuations in the contact process and related models. – Bull. 
Math. Biol. 62: 959–975.

Streever, W. J. and Genders, A. J. 1997. Effect of improved tidal 
flushing and competitive interactions at the boundary between 
salt marsh and pasture. – Estuaries Coasts 20: 807–818.

Thomas, L. 1997. Retrospective power analysis. – Conserv.  
Biol. 11: 276–280.

Thuiller, W. et  al. 2008. Predicting global change impacts on  
plant species’ distributions: future challenges. – Perspect. Plant 
Ecol. Evol. Syst. 9: 137–152.

Tilman, D. 2007. Resource competition and plant traits: a reply 
to Craine et al. 2005. – J. Ecol. 95: 231–234.

Van Saarloos, W. 2003. Front propagation into unstable states.  
– Phys. Rep. 386: 29–222.

Weiers, S. et al. 2004. Mapping and indicator approaches for the 
assessment of habitats at different scales using remote sensing 
and GIS methods. – Landscape Urban Plann. 67: 43–65.

Wiens, J. A. et  al. 1985. Boundary dynamics: a conceptual  
framework for studying landscape ecosystems. – Oikos 45: 
421–427.

Zeng, Y. and Malanson, G. P. 2006. Endogenous fractal dynamics 
at subalpine treeline ecotones. – Geogr. Anal. 38: 271–287.

Lees, B. G. and Ritman, K. 1991. Decision-tree and rule-induction 
approach to integration of remotely sensed and GIS data  
in mapping vegetation in disturbed or hilly environments.  
– Environ. Manage. 15: 823–831.

Mark, A. F. and Smith, P. M. F. 1975. A lowland vegetation 
sequence in south Westland: pakihi bog to podocarp  
forest. Part 1: the principal strata. – Proc. N. Z. Ecol. Soc.  
22: 76–92.

Meehl, G. A. et  al. 2007. Global climate projections. – In:  
Solomon, S. et  al. (eds), Climate change 2007: the physical 
science basis. Contribution of Working Group I to the  
Fourth Assessment Report of the Intergovernmental Panel  
on Climate Change. Cambridge Univ. Press, pp. 747–845.

Milne, B. T. et al. 1996. Detection of critical densities associated 
with pinon-juniper woodland ecotones. – Ecology 77:  
805–821.

Moir, W. H. et al. 1999. Microscale patterns of tree establishment 
near upper treeline, Snowy Range, Wyoming, U.S.A. – Arct. 
Antarct. Alp. Res. 31: 379–388.

Molofsky, J. et  al. 2001. Coexistence under positive frequency 
dependence. – Proc. R. Soc. B 268: 273–277.

Moody, M. E. and Mack, R. N. 1988. Controlling the spread  
of plant invasions: the importance of nascent foci. – J. Appl. 
Ecol. 25: 1009–1021.

O’Malley, L. et  al. 2009a. Fisher waves and the velocity of  
front propagation in a two-species invasion model with pre
emptive competition. – In: Landau, D. P. et  al. (eds),  
Computer simulation studies in condensed-matter physics  
XIX Proceedings of the Nineteenth Workshop Athens, GA, 
USA, 20–24 February. Springer, pp. 73–78.

O’Malley, L. et al. 2009b. Ecological invasion, roughened fronts, 
and a competitor’s extreme advance: integrating stochastic 
spatial-growth models. – Bull. Math. Biol. 71: 1160–1178.

Pascual, M. and Guichard, F. 2005. Criticality and disturbance  
in spatial ecological systems. – Trends Ecol. Evol. 20: 88–95.

Peltzer, D. A. 2001. Plant responses to competition and soil origin 
across a prairie–forest boundary. – J. Ecol. 89: 176–185.

Supplementary material (Appendix E7753 at , www. 
oikosoffice.lu.se/appendix .). Appendix 1–5.


	A new method to infer vegetation boundary movement from 'snapshot' data
	Recommended Citation

	ECOG_A_007753.indd

