12 research outputs found
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
The Chromosome 21 Kinase DYRK1A and Its Substrate FOXO1 Constitute a Novel Therapeutic Pathway in B-ALL
International audienceDual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a serine/threonine kinase that regulates diverse pathways such as splicing, cell cycle, differentiation, apoptosis, and transcription. DYRK1A is encoded within the Down syndrome (DS) critical region of chromosome 21, underlying its importance in DS-related pathologies, such as Alzheimer's disease. Children with DS have an increased risk of developing hematologic malignancies, namely acute megakaryoblastic leukemia (DS-AMKL) and B-cell acute lymphoblastic leukemia (DS-ALL). We previously reported that DYRK1A promotes DS-AMKL by regulating subcellular localization of its substrate NFAT. In a subsequent study, we examined its role in normal hematopoiesis and found that DYRK1A is necessary for B and T cell development through phosphorylation and destabilization of Cyclin D3. Dyrk1a-deficient large pre-B cells and double negative thymocytes are unable to enter quiescence for maturation. Despite elevated levels of Cyclin D3, however, these cells lose proliferative capacity due to a block at the G2-M transition. This observation suggests that DYRK1A inhibition may exhibit anti-tumor activity in lymphocytes by first stimulating exit from quiescence but then blocking repeated rounds of cell division.Notably, DYRK1A is overexpressed in acute leukemias, including both T-ALL and B-ALL, relative to normal hematopoietic counterparts. Moreover, overexpression of dominant-negative DYRK1A-K188R impairs proliferation in human B-ALL cell lines, suggesting that DYRK1A kinase activity is required for B-ALL growth. In order to assess the physiologic relevance of targeting DYRK1A in vivo, we generated a murine model of B-ALL with a floxed Dyrk1a allele and observed significant survival advantages with homozygous (p=0.0045) and heterozygous deletion (p=0.0015). Additionally, both B-ALL cell lines and patient samples were sensitive to EHT1610, a potent and selective DYRK1 inhibitor. Relevant to the localization of DYRK1A on chromosome 21, DS-ALL samples were especially sensitive to kinase inhibition. EHT1610 also conferred synergistic growth inhibition of B-ALL cells when combined with cytotoxic chemotherapy drugs used in traditional ALL treatment regimens, such as dexamethasone, methotrexate and cytarabine.We next aimed to elucidate the mechanism by which DYRK1A inhibition cause a failure of G2-M progression. Using global and directed phosphoproteomic studies, we identified several DYRK1A substrates in pre-B cells that are involved in cell cycle, splicing, transcriptional regulation, and RNA metabolism. In addition to Cyclin D3, a notable substrate is FOXO1, an indispensable transcription factor in B lymphopoiesis. We observed that inhibition of DYRK1A led to an accumulation of FOXO1 in the nucleus of large pre-B cells despite intact PI3K/Akt signaling, which is the predominant negative regulator of FOXO1. Treatment of pre-B cells with AS1842856, an inhibitor of FOXO1 nuclear translocation, rescued the G2-M blockade and proliferative impairment induced by EHT1610 treatment. Despite FOXO1 acting as a tumor suppressor in normal lymphocytes, B-ALL cell lines and patient samples were paradoxically sensitive to FOXO1 inhibition, suggesting a unique requirement in the survival of B-ALL cells. This may be due to regulation of DNA damage, as DYRK1A inhibition alone led to negligible changes in gamma-H2AX foci, whereas FOXO1 inhibition increased DNA damage. When DYRK1A and FOXO1 were inhibited in combination, we observed a synergistic accumulation of DNA damage along with cell death in B-ALL cell lines.Finally, as both EHT1610 and AS1842856 are potent inhibitors of B-ALL cell growth in vitro, we assessed their in vivo efficacy. Both EHT1610 and AS1842856 significantly increased survival in xenograft models of B-ALL (p=0.0002 and p=0.001, respectively). We therefore conclude that both DYRK1A and its substrate FOXO1 are therapeutic targets in B-ALL. Importantly, EHT1610 represents the first selective DYRK1A inhibitor with suitable in vivo activity. Ultimately, we have determined that the DYRK1A pathway is integral to the maintenance of normal and malignant B-lymphopoiesis, the latter which can be effectively targeted through 1) a primary proliferative impairment, 2) sensitization to cell cycle-dependent chemotherapy, and 3) downstream inhibition of DYRK1A substrates such as FOXO1
The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia
In Drosophila melanogaster, although the NF-κB transcription factors play a pivotal role in the inducible expression of innate immune genes, such as antimicrobial peptide genes, the exact regulatory mechanism of the tissue-specific constitutive expression of these genes in barrier epithelia is largely unknown. Here, we show that the Drosophila homeobox gene product Caudal functions as the innate immune transcription modulator that is responsible for the constitutive local expression of antimicrobial peptides cecropin and drosomycin in a tissue-specific manner. These results suggest that certain epithelial tissues have evolved a unique constitutive innate immune strategy by recruiting a developmental “master control” gene
Genome-wide association study of over 40,000 bipolar disorder cases provides novel biological insights
Bipolar disorder (BD) is a heritable mental illness with complex etiology. We performed a genome-wide association study (GWAS) of 41,917 BD cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. BD risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating eQTL data implicated 15 genes robustly linked to BD via gene expression, including druggable genes such as HTR6, MCHR1, DCLK3 and FURIN. This GWAS provides the best-powered BD polygenic scores to date, when applied in both European and diverse ancestry samples. Analyses of BD subtypes indicated high but imperfect genetic correlation between BD type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of BD, identify novel therapeutic leads and prioritize genes for functional follow-up studies
Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia
Summary: Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders