2,406 research outputs found
Zeta potential in ceramic industry
Deflocculation, electrical conductivity and zeta potential (ZP) are studied for the addition of 0 to 10000 ppm Na2SiO3 deflocculator to slips obtained from three argillaceous materials (kaolin d'Arvor, ball clay Hyplas 64, and/or Granger Clay No. 10). The quantity of Na2SO3 required to deflocculate a slip is independent of the density but differes for each clay. The ZP is directly related to the density of the slip. The higher the ZP the more stable a slip is; the value of the ZP of a mixture does not follow a simple law but the electrical resistance of a mixture does follow a simple additive law. The ZP appears to have linear relation with the specific surface of the argillaceous material
Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina
Hayashi and Carthew (Nature 431 [2004], 647) have shown that the packing of
cone cells in the Drosophila retina resembles soap bubble packing, and that
changing E- and N-cadherin expression can change this packing, as well as cell
shape.
The analogy with bubbles suggests that cell packing is driven by surface
minimization. We find that this assumption is insufficient to model the
experimentally observed shapes and packing of the cells based on their cadherin
expression. We then consider a model in which adhesion leads to a surface
increase, balanced by cell cortex contraction. Using the experimentally
observed distributions of E- and N-cadherin, we simulate the packing and cell
shapes in the wildtype eye. Furthermore, by changing only the corresponding
parameters, this model can describe the mutants with different numbers of
cells, or changes in cadherin expression.Comment: revised manuscript; 8 pages, 6 figures; supplementary information not
include
A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs
Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents
The <em>Drosophila</em> MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport
Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly understood. Here we show that mutations in drop out (dop) disturb the segregation of membrane cortical compartments and the clustering of E-cadherin into basal adherens junctions in early cellularisation. dop is required for normal furrow formation and controls the tight localisation of furrow canal proteins and the formation of F-actin foci at the incipient furrows. We show that dop encodes the single Drosophila homologue of microtubule-associated Ser/Thr (MAST) kinases. dop interacts genetically with components of the dynein/dynactin complex and promotes dynein-dependent transport in the embryo. Loss of dop function reduces phosphorylation of Dynein intermediate chain, suggesting that dop is involved in regulating cytoplasmic dynein activity through direct or indirect mechanisms. These data suggest that Dop impinges upon the initiation of furrow formation through developmental regulation of cytoplasmic dynein
Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta
Collective and single cell behavior in epithelial contact inhibition
Control of cell proliferation is a fundamental aspect of tissue physiology
central to morphogenesis, wound healing and cancer. Although many of the
molecular genetic factors are now known, the system level regulation of growth
is still poorly understood. A simple form of inhibition of cell proliferation
is encountered in vitro in normally differentiating epithelial cell cultures
and is known as "contact inhibition". The study presented here provides a
quantitative characterization of contact inhibition dynamics on tissue-wide and
single cell levels. Using long-term tracking of cultured MDCK cells we
demonstrate that inhibition of cell division in a confluent monolayer follows
inhibition of cell motility and sets in when mechanical constraint on local
expansion causes divisions to reduce cell area. We quantify cell motility and
cell cycle statistics in the low density confluent regime and their change
across the transition to epithelial morphology which occurs with increasing
cell density. We then study the dynamics of cell area distribution arising
through reductive division, determine the average mitotic rate as a function of
cell size and demonstrate that complete arrest of mitosis occurs when cell area
falls below a critical value. We also present a simple computational model of
growth mechanics which captures all aspects of the observed behavior. Our
measurements and analysis show that contact inhibition is a consequence of
mechanical interaction and constraint rather than interfacial contact alone,
and define quantitative phenotypes that can guide future studies of molecular
mechanisms underlying contact inhibition
Adaptation of Listeria monocytogenes in a simulated cheese medium: effects on virulence using the Galleria mellonella infection model
The aim of this study was to evaluate the effect of the acid and salt adaptation in a cheese-based medium on the virulence potential of Listeria monocytogenes strains isolated from cheese and dairy processing environment using the Galleria mellonella model. Four L.monocytogenes strains were exposed to a cheese-based medium in conditions of induction of an acid tolerance response and osmotolerance response (pH 5 center dot 5 and 3 center dot 5% w/v NaCl) and injected in G.mellonella insects. The survival of insects and the L.monocytogenes growth kinetics in insects were evaluated. The gene expression of hly, actA and inlA genes was determined by real-time PCR. The adapted cells of two dairy strains showed reduced insect mortality (P<0 center dot 05) in comparison with nonadapted cells. Listeria monocytogenes Scott A was the least virulent, whereas the cheese isolate C882 caused the highest insect mortality, and no differences (0 center dot 05) was found between adapted and nonadapted cells. The gene expression results evidenced an overexpression of virulence genes in cheese-based medium, but not in simulated insect-induced conditions. Our results suggest that adaptation to low pH and salt in a cheese-based medium can affect the virulence of L.monocytogenes, but this effect is strain dependent. Significance and Impact of the Study In this study, the impact of adaptation to low pH and salt in a cheese-based medium on L.monocytogenes virulence was tested using the Wax Moth G.mellonella model. This model allowed the differentiation of the virulence potential between the L.monocytogenes strains. The effect of adaptation on virulence is strain dependent. The G.mellonella model revealed to be a prompt method to test food-related factors on L.monocytogenes virulence.Fundacao para a Ciencia e Tecnologia (FCT); IBB/CBME, LA, FEDER/The authors are grateful for the support of Fundação para
a Ciência e Tecnologia (FCT) and IBB/CBME, LA,
FEDER
Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart
Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
- …
