755 research outputs found

    An in vivo structure-function study of armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling

    Get PDF
    Armadillo, the Drosophila homologue of vertebrate beta-catenin, plays a pivotal role both in Wingless signaling and in assembly of adherens junctions. We performed the first in vivo structure-function study of an adherens junction protein, by generating and examining a series of Armadillo mutants in the context of the entire animal. We tested each mutant by assaying its biological function, its ability to bind proteins that normally associate with Armadillo in adherens junctions, its cellular localization, and its pattern of phosphorylation. We mapped the binding sites for DE-cadherin and alpha-catenin. Although these bind to Armadillo independently of each other, binding of each is required for the function of adherens junctions. We identified two separate regions of Armadillo critical for Wingless signaling. We demonstrated that endogenous Armadillo accumulates in the nucleus and provide evidence that it may act there in transducing Wingless signal. We found that the Arm repeats, which make up the central two-thirds of Armadillo, differ among themselves in their functional importance in different processes. Finally, we demonstrated that Armadillo's roles in adherens junctions and Wingless signaling are independent. We discuss the potential biochemical role of Armadillo in each process

    Whole ovary immunohistochemistry for monitoring cell proliferation and ovulatory wound repair in the mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian surface epithelial cells are thought to be a precursor cell type for ovarian carcinoma. It has been proposed that an increased rate of ovarian surface epithelial cell proliferation during ovulatory wound repair contributes to the accumulation of genetic changes and cell transformation. The proliferation of ovarian surface epithelial cells during ovulatory wound repair has been studied primarily using immunohistochemical staining of paraffin-embedded ovary sections. However, such analyses require complex reconstruction from serially-cut ovary sections for the visualization and quantification of the cells on the ovarian surface. In order to directly visualize the proliferation and organization of the ovarian surface epithelial cells, we developed a technique for immunohistochemical staining of whole mouse ovaries. Using this method, we analyzed cell proliferation and morphologic changes in mouse ovarian surface epithelial cells during follicle growth and ovulatory wound repair.</p> <p>Methods</p> <p>Three-week old FVB/N female mice were superovulated by sequential administration of pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Ten hours after hCG administration, mice were given 5-bromo-2-deoxyuridine (BrdU) and euthanized two hours after BrdU administration for ovary isolation. The levels of incorporated BrdU in the ovarian surface epithelial cells were measured by staining paraffin-embedded ovary sections and whole ovaries with the BrdU antibody. Re-epithelialization of the ovarian surface after ovulatory rupture was visualized by immunohistochemical staining with E-cadherin and Keratin 8 in paraffin-embedded ovary sections and whole ovaries.</p> <p>Results</p> <p>We determined that active proliferation of ovarian epithelial surface cells primarily occurs during antral follicle formation and, to a lesser extent, in response to an ovulatory wound. We also demonstrated that ovarian surface epithelial cells exhibit a circular organization around the wound site</p> <p>Conclusion</p> <p>Whole ovary immunohistochemistry enables efficient and comprehensive three-dimensional visualization of ovarian surface epithelial cells without the need for laborious reconstruction from immunohistochemically-stained serial ovary sections.</p

    Computational pathology in ovarian cancer

    Get PDF
    Histopathologic evaluations of tissue sections are key to diagnosing and managing ovarian cancer. Pathologists empirically assess and integrate visual information, such as cellular density, nuclear atypia, mitotic figures, architectural growth patterns, and higher-order patterns, to determine the tumor type and grade, which guides oncologists in selecting appropriate treatment options. Latent data embedded in pathology slides can be extracted using computational imaging. Computers can analyze digital slide images to simultaneously quantify thousands of features, some of which are visible with a manual microscope, such as nuclear size and shape, while others, such as entropy, eccentricity, and fractal dimensions, are quantitatively beyond the grasp of the human mind. Applications of artificial intelligence and machine learning tools to interpret digital image data provide new opportunities to explore and quantify the spatial organization of tissues, cells, and subcellular structures. In comparison to genomic, epigenomic, transcriptomic, and proteomic patterns, morphologic and spatial patterns are expected to be more informative as quantitative biomarkers of complex and dynamic tumor biology. As computational pathology is not limited to visual data, nuanced subvisual alterations that occur in the seemingly “normal” pre-cancer microenvironment could facilitate research in early cancer detection and prevention. Currently, efforts to maximize the utility of computational pathology are focused on integrating image data with other -omics platforms that lack spatial information, thereby providing a new way to relate the molecular, spatial, and microenvironmental characteristics of cancer. Despite a dire need for improvements in ovarian cancer prevention, early detection, and treatment, the ovarian cancer field has lagged behind other cancers in the application of computational pathology. The intent of this review is to encourage ovarian cancer research teams to apply existing and/or develop additional tools in computational pathology for ovarian cancer and actively contribute to advancing this important field

    Cell–cell signalling: Wingless lands at last

    Get PDF
    A novel class of receptor – the Frizzled family – has been identified and the members shown to be receptors for Wingless and its homologs, the Wnts, which mediate key cell–cell interactions during the development of fruitflies and vertebrates, respectively

    Collective and single cell behavior in epithelial contact inhibition

    Get PDF
    Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as "contact inhibition". The study presented here provides a quantitative characterization of contact inhibition dynamics on tissue-wide and single cell levels. Using long-term tracking of cultured MDCK cells we demonstrate that inhibition of cell division in a confluent monolayer follows inhibition of cell motility and sets in when mechanical constraint on local expansion causes divisions to reduce cell area. We quantify cell motility and cell cycle statistics in the low density confluent regime and their change across the transition to epithelial morphology which occurs with increasing cell density. We then study the dynamics of cell area distribution arising through reductive division, determine the average mitotic rate as a function of cell size and demonstrate that complete arrest of mitosis occurs when cell area falls below a critical value. We also present a simple computational model of growth mechanics which captures all aspects of the observed behavior. Our measurements and analysis show that contact inhibition is a consequence of mechanical interaction and constraint rather than interfacial contact alone, and define quantitative phenotypes that can guide future studies of molecular mechanisms underlying contact inhibition

    Cancer: leaping the E‐cadherin hurdle

    Full text link
    Aberrant activation of the Wnt signaling pathway is a common cause of colon cancer and other tumor types, accomplishing many of the hallmarks of cancer including sustained proliferative signaling, replicative immortality, reprogrammed metabolism, angiogenesis, and invasion. Yet, the dominant mutation that leads to chronic Wnt signaling in colon cancer is quite different from the spectrum of mutations that activate Wnt signaling in other tumor types. In this issue of The EMBO Journal, Huels et al (2015) focus on the influential role E-cadherin plays in shaping these differences

    An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly

    Get PDF
    Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays

    The Namaste Care programme can reduce behavioural symptoms in care home residents with advanced dementia

    Get PDF
    Objective: The objective of the study was to evaluate the effects of the Namaste Care programme on the behavioural symptoms of residents with advanced dementia in care homes and their pain management. Methods: Six dementia care homes collaborated in an action research study - one withdrew. Inclusion criteria were a dementia diagnosis and a Bedford Alzheimer's Nursing Severity Scale score of >16. Primary research measures were the Neuropsychiatric Inventory - Nursing Homes (NPI-NH) and Doloplus-2 behavioural pain assessment scale for the elderly. Measures were recorded at baseline and at three 1-2 monthly intervals after Namaste Care started. Results: Management disruption occurred across all care homes. The severity of behavioural symptoms, pain and occupational disruptiveness (NPI-NH) decreased in four care homes. Increased severity of behavioural symptoms in one care home was probably related to poor pain management, reflected in increased pain scores, and disrupted leadership. Comparison of NPI-NH scores showed that severity of behavioural symptoms and occupational disruptiveness were significantly lower after initiation of Namaste Care (n-=-34, p-<-0.001) and after the second interval (n-=-32, p-<-0.001 and p-=-0.003). However, comparison of these measures in the second and third intervals revealed that both were slightly increased in the third interval (n-=-24, p-<-0.001 and p-=-0.001). Conclusions: Where there are strong leadership, adequate staffing, and good nursing and medical care, the Namaste Care programme can improve quality of life for people with advanced dementia in care homes by decreasing behavioural symptoms. Namaste is not a substitute for good clinical care
    corecore