174 research outputs found

    Addressing the nitrogen challenge: Footprint tools and on-farm solutions

    Get PDF
    Nitrogen management presents a unique dilemma: We must use nitrogen to grow our food and sustain life on earth, but excess reactive nitrogen that accumulates in the environment contributes to a cascade of negative impacts to human and ecosystem health. Addressing this nitrogen challenge will require a suite of solutions. This dissertation presents and explores three nitrogen management strategies: 1) The first ever integrated carbon and nitrogen footprint tool for campus sustainability management; 2) Exporting compost to improve a farm’s nitrogen efficiency; and 3) Methods for reducing gas emissions from aerated static pile heat recovery composting. Nitrogen footprint tools connect our everyday choices with the associated nitrogen pollution to the environment. The campus-level nitrogen footprint tool has been particularly successful at both communicating the nitrogen story and encouraging real change with nitrogen footprint reduction goals. However, it is important to assess environmental impacts together to identify management strategies and avoid trade-offs. In this paper, the development and methodology behind the first ever integrated carbon and nitrogen footprint tool for campuses is presented. Comparisons of campus carbon and nitrogen footprints show that the footprints correlate strongly, and scenario analyses indicate benefits to both footprints from a range of management strategies. Integrating the carbon and nitrogen footprints into a single tool for campuses facilitates more comprehensive and integrated management of campus sustainability. Food production is a significant source of nitrogen pollution, and new and improved farm nitrogen management practices are necessary to reduce nitrogen losses. In this study, aerated static pile heat recovery composting is considered as a nitrogen management strategy. To assess its potential, the nitrogen budget of an organic dairy farm was first assessed, where it was found that organic practices led to the cycling of substantially more nitrogen on the farm property than was imported or exported. Some of the potential farm nitrogen loss pathways were characterized, including gas emissions from the compost facility (ammonia, carbon dioxide, methane), but future research should characterize other nitrogen loss pathways to assess the balance between storage and environmental loss. Management strategies for reducing greenhouse gas and ammonia emissions from the compost facility were identified. Scenario analysis found that exporting finished compost was a viable strategy for improving the farm’s nitrogen use efficiency as long as enough nitrogen is retained on-site to support crop production

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky1^{-1}\,day1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of 1.5-1.5, the rate is 10.71.8+2.7(sys)±3(stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky1^{-1}\,day1^{-1} above a threshold of 57±6(sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of 2.1-2.1, it is 16.61.5+1.9(sys)±4.7(stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky1^{-1}\,day1^{-1} above a threshold of 41.6±1.5(sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    The nitrogen footprint of Ukraine: why personal consumption matters

    Get PDF
    Unintended reactive nitrogen (N) losses from agriculture, energy and transportation pose significant environmental hazards, including eutrophication, acidification, water and air pollution, biodiversity loss, human health risks and climate change. The concept of a Nitrogen Footprint (NF) emerges as a pivotal metric, reflecting potential N losses in the entire production-consumption chain of goods and services used by an individual within a defined timeframe. In a pioneering assessment of per capita NF in Ukraine, key factors, such as the food production chain, consumption patterns, connection to wastewater treatment (WWT) system and the efficacy of WWT facilities, were identified as critical components. Addressing specific challenges, such as data availability, soil N depletion and manure waste, was found to be particularly complex. The apparent high nitrogen use efficiency (NUE) in Ukrainian cropping systems was highlighted to be actually reflected in the elevated N mineralization rate in Ukrainian soils characterized by high organic matter content. The individual Ukraine NF (22.1 kg N cap-1 yr-1 as of 2017) was found to be much lower than that of the US and Australia being comparable to Western European countries. Even so, significant opportunities for reduction remain through a wide range of options towards healthier and more sustainable dietary choices. Potential reductions, ranging from 22% to 69%, were shown for omnivore, reduced red meat, no red meat, half meat products, vegetarian and vegan diets. In the absence of proper manure management in Ukraine, even greater reductions of an ‘actual’ NF can be achieved if wasted N manure is considered. The war's impact is assumed to result in a slight increase or no changes in individual food consumption NFs and an increase in food production NFs for local products, while reductions in individual transport and energy NFs were likely across Ukraine. Nonetheless, refugees massively displaced to less affected regions overload a largely outdated civilian infrastructure, leading to higher N losses. Looking ahead, sustained support, capital investments, legislative enhancements and regulatory frameworks, especially upon post-war renovation of Ukraine, are imperative for reducing the individual NF. This involves enhancing nitrogen use efficiency in agriculture, establishing efficient manure management, upgrading WWT facilities, promoting renewable energy adoption, bolstering requisite infrastructure and raising public awareness on environmental sustainability

    Intentional versus unintentional nitrogen use in the United States : trends, efficiency and implications

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeochemistry 114 (2013): 11-23, doi:10.1007/s10533-012-9801-5.Human actions have both intentionally and unintentionally altered the global economy of nitrogen (N), with both positive and negative consequences for human health and welfare, the environment and climate change. Here we examine long-term trends in reactive N (Nr) creation and efficiencies of Nr use within the continental US. We estimate that human actions in the US have increased Nr inputs by at least ~5 times compared to pre-industrial conditions. Whereas N2 fixation as a by-product of fossil fuel combustion accounted for ~1/4 of Nr inputs from the 1970s to 2000 (or ~7 Tg N year−1), this value has dropped substantially since then (to <5 Tg N year−1), owing to Clean Air Act amendments. As of 2007, national N use efficiency (NUE) of all combined N inputs was equal to ~40 %. This value increases to 55 % when considering intentional N inputs alone, with food, industrial goods, fuel and fiber production accounting for the largest Nr sinks, respectively. We estimate that 66 % of the N lost during the production of goods and services enters the air (as NO x , NH3, N2O and N2), with the remaining 34 % lost to various waterways. These Nr losses contribute to smog formation, acid rain, eutrophication, biodiversity declines and climate change. Hence we argue that an improved national NUE would: (i) benefit the US economy on the production side; (ii) reduce social damage costs; and (iii) help avoid some major climate change risks in the future.This work resulted from a workshop supported by NSF Research Coordination Network Awards DEB-0443439 and DEB-1049744 and by the David and Lucille Packard Foundation

    Ancient water supports today's energy needs

    Get PDF
    The water footprint for fossil fuels typically accounts for water utilized in mining and fuel processing, whereas the water footprint of biofuels assesses the agricultural water used by crops through their lifetime. Fossil fuels have an additional water footprint that is not easily accounted for: ancient water that was used by plants millions of years ago, before they were transformed into fossil fuel. How much water is mankind using from the past to sustain current energy needs? We evaluate the link between ancient water virtually embodied in fossil fuels to current global energy demands by determining the water demand required to replace fossil fuels with biomass produced with water from the present. Using equal energy units of wood, bioethanol, and biodiesel to replace coal, natural gas, and crude oil, respectively, the resulting water demand is 7.39 × 1013 m3 y−1, approximately the same as the total annual evaporation from all land masses and transpiration from all terrestrial vegetation. Thus, there are strong hydrologic constraints to a reliance on biofuel energy produced with water from the present because the conversion from fossil fuels to biofuels would have a disproportionate and unsustainable impact on the modern water. By using fossil fuels to meet today's energy needs, we are virtually using water from a geological past. The water cycle is insufficient to sustain the production of the fuel presently consumed by human societies. Thus, non‐fuel‐based renewable energy sources are needed to decrease mankind's reliance on fossil fuel energy without placing an overwhelming pressure on global freshwater resources

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

    Get PDF
    A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl

    Nitrogen-neutrality: a step towards sustainability

    Get PDF
    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, Nneutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US$ 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South- Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates Online supplementary data available from stacks.iop.org/ERL/9/115001/mmediainfo:eu-repo/semantics/publishedVersio

    Differentiation-Dependent Secretion of Proangiogenic Factors by Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF165/121 antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair
    corecore