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Prologue: Origin of the Agroecosystem Project at the University of New Hampshire 

Organic Dairy Research Farm – John Aber 

        

Introduction 

 

“You should apply for this grant.”  This declaration from Tom Kelly, Director of the 

Sustainability Institute at the University of New Hampshire (UNH), was one of several key 

events that led to the research program summarized here.  The year was 2007, and I had just 

come out of 4 years in central administration at UNH.  Returning to the faculty, I had not 

intended to apply for any more research grants.   

 

Tom had a different idea.  The opportunity he was promoting was a new call for proposals from 

the USDA program in Sustainable Agriculture Research and Education (SARE).  The call 

focused on studying agricultural systems as ecosystems, or agroecosystems.  With decades of 

experience studying forest ecosystems, Tom figured it would be “easy” for me to apply the same 

concepts to agriculture.  An intriguing and creative idea – not the first from Tom. 

 

A second key event was the establishment, in 2006, of the first Organic Dairy Research Farm 

(ODRF) at a land grant institution.  With inspiration from senior faculty member Chuck Schwab, 

University of Maine Extension Professor Richard Kersbergen and, again, Tom Kelly, UNH, 

through the NH Agricultural Experiment Station (NHAES), had converted the ~300 acre Burley-

Demeritt Farm and Dudley Lot 7 miles from the main campus to an organic dairy.  Investments 

by NHAES in this new facility were crucial to getting it up and running.  As a unique facility at a 

unique Farm, UNH highlighted this new venture, and the birth of its first calf [76].  

 

The establishment of the ODRF led to a cascade of other events that made the research reported 

here possible.  One early opportunity was created by the paucity of research on organic dairy 

operations at major land grants across the country.  Because of this, leaders from the 4 largest 

organic milk producers in the country, Stonyfield, Organic Valley, Aurora and Horizon, were 

drawn to the farm, providing both financial assistance and input on the needs of the industry.   

 

Through interactions with personnel from these four producers, the lead investigators on this 

project had the opportunity to meet with industry reps, and from this to determine the ways in 

which new information might help sustain the dairy farmers providing milk to the processors, 

and also reduce the environmental footprint of farm operations.  Our focus on bedding, energy 

and environmental impacts resulted in large part from these meetings. 

 

These events together - the SARE call, the establishment of the ODRF, and interactions with 

industry experts - created the opportunity to pull colleagues together to look at this whole-farm 

system as an ecosystem.  With Bill McDowell, Matt Davis, Charles Schwab and Kevin Brussel 

the proposal went in, and was accepted. 

 

Structure of the Project and the First Proposal 

 

Starting with the goal of increasing the sustainability of organic dairy operations in the 

Northeast, and having experience with the concept of nutrient and energy cycles, we began to 
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consider ways of closing those cycles at the ODRF by retaining as much of the organic matter, 

carbon and nitrogen capital on-site as possible.  The central concept of the proposal as submitted 

is summarized in Figure P.1. 

 

 

As the ideas for this proposal were being developed, we became aware of an innovative method 

for composting farm wastes that minimizes environmental impacts, speeds the composting 

process, and captures “waste” heat for heating farm facilities.  A visit to one of the first of these 

innovative systems at Diamond Hill Custom Heifers in Enosburg Falls, Vermont, provided the 

inspiration for including this new technology in our SARE proposal.  At the facility, we met 

Brian Jerose of AgriLab Technologies®, also in Vermont, who had designed and guided the 

installation of that system.  The process is called Aerated Static Pile/Heat Recovery Composting 

(ASP/HRC), and out of this visit developed a long-standing collaboration between UNH and 

AgriLab covering the design of the physical system at UNH and the control and data acquisition 

systems as well.  A description of the ASP/HRC facility built at the ODRF is included in Chapter 

3, and information on operations and heat generation and capture in Chapters 4 and 9. 

 

Another relatively new technology that contributed to the final structure of the proposal was a 

commercial-scale wood shaving machine, essentially an oversized wood planer on a trailer, that 

could turn whole logs into thin shavings suitable for livestock animal bedding material.  Given 

the preference for wood products for barn bedding among organic dairy operations in New 

England (as later supported by results of a survey of regional dairy farmers, Chapter 2), and 

given the prevalence of low quality softwoods on many New England dairy farms, including the 

ODRF, the prospect of closing the carbon cycle on the farm and reducing bedding costs by 

converting the softwood resource to bedding became part of our proposal.  With support from the 

NHAES, a wood shaving machine was purchased for the ODRF and this project. 

 

Figure P.1 – The initial concept for the UNH/SARE Agroecosystem Project.  The goal was to 
move from an isolated dairy with major commodity inputs from the marketplace and 
pollution outputs to the environment (boundaries noted with dashed lines on diagram to the 
left) to a system with increasingly closed cycles, including links to woodlands on the site and 
composting of organic wastes (note the single dashed line on the diagram to the right). 
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Another very major event in the development of this project, and of the ODRF, was the 

emergence of an anonymous donor who was fascinated by both the Farm and the Project, and 

supported almost all of the cost of building the composting facility described in chapter 3.   

Some of our initial efforts on composting for energy capture, as reported in Chapter 1, were 

interesting, but not at a scale relevant to commercial operations.  This new facility, as the only 

one of its kind at the only ODRF in the country, provided a unique opportunity of incredible 

value to the project.  At the request of the donor, the facility was generously named for an 

alternative energy pioneer, Joshua Nelson.  The naming event was highlighted by UNH in a press 

release in 2014 [121]. 

 

As these disparate pieces came together, it became possible to describe a research project built on 

the concept expressed in Figure P.1 that included a number of tangible goals and testable ideas.  

At an operational and process level, these included internalizing bedding production and 

composting of wastes (Figure P.2). 

 

 

 

 

 

 

 

 

 

Briefly, we envisioned a system whereby low-quality softwoods from the extensive woodlot at 

the ODRF were harvested and converted to bedding using the recently acquired wood shaving 

machine.  The shavings would be used as bedding, with the resulting manure bedding mixture 

composted in the newly constructed ASP/HRC composting system, with the heat generated by 

the compost captured and used on the farm.  Chapter 2 includes references to the results of the 

bedding work, which has been published in professional and stakeholder outlets.  Chapters 3 and 

4 describe the building and operation of the ASP/HRC facility, including the amount of energy 

generated per day.   

 

To address, at least partially, the environmental impacts of farm operations, and especially the 

composting process, Chapters 5 and 6 present information on emissions of gases from in the 

compost vapor, and the use of a simple biofilter to trap ammonia.  Chapter 7 extends the 

environmental analysis to include impacts on water quality using data from a set of groundwater 

Figure P.2 – Graphic presentation 
of the steps in an integrated 
system for internalizing energy, 
carbon and nitrogen cycles at the 
UNH Organic Dairy Research 
Farm.  See text for explanation. 
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wells and a small creek on the farm property.  Chapter 8 brings operational farm data together to 

construct a nitrogen budget for the property and assess the potential for loss to the environment.   

 

A final conceptual step described in the proposal, but not physically tested, was using the heat 

and gases generated by the composting facility to enhance production and extend the season in 

an adjacent greenhouse (Figure P.2).  In Chapter 9 we test this final concept by modeling a 

linkage between an ASP/HRC composting facility and a greenhouse system, using UNH as a 

case study.  In the Epilogue we propose how that physical linkage might be accomplished, again 

at UNH. 

 

Another Source of Inspiration – Coming Full Circle 

 

There was one additional, historic source of inspiration for this work, and one that comes full 

circle with recent sources of support for the ODRF.  In the 1970s, John and Nancy Jack Todd, 

along with others, established the New Alchemy Institute, and constructed the first Ark (Figure 

P.3).  Reflecting many of the values of the time about self-sufficiency and minimizing 

environmental footprints, including concepts we now include under the aegis of Sustainable 

Agriculture, The Ark was conceived as a self-contained food production/waste management 

system that recycled wastes as fertilizer, produced food and drew energy from the sun.  The 

resemblance between The Ark and the system envisioned in Figure P.2 is not coincidental.  I was 

a post-doc at the Marine Biological Laboratory in Woods Hole, Massachusetts in the early ‘70s, 

and was aware of, and drew inspiration from New Alchemy that continued into this USDA-

SARE project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among the early contributors to the work of New Alchemy were Gary Hirshberg and Bruce 

Fulford.  Both prepared reports on alternative energy and agriculture systems [35, 45, 46], and 

when our USDA-SARE project began, the only reference on compost-heated greenhouses in the 

USDA database was a report by Gary Hirshberg out of New Alchemy (a useful set of references 

Figure P.3 – Image and conceptual 
diagram of the original New 
Alchemy Ark on Cape Cod in 
Massachusetts [6].   
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can be found in [26]).  To close this historical circle, Bruce Fulford now operates City Soil, a 

composting operation in Boston, has been a long-time advocate for composting, and also served 

as a member of the Ph.D. thesis committee for Matt Smith at UNH.  Gary Hirshberg went on to 

become a founder and CEO of Stonyfield Yogurt.  Both he and Stonyfield were strong initial 

supporters of the Organic Dairy Research Farm at UNH, providing both financial and technical 

support.  At the ceremony announcing the establishment of the ODRF, Gary Hirshberg said, 

“This could not come at a better time, as the organic dairy market in general and New England in 

particular are in need of more organic farmers.  We believe organic dairy farming has the 

promise of saving New Hampshire and New England family farmers.”  [75] 

 

Acknowledgements 

 

Serendipity played an important role in being able to bring the agroecosystem concept to life at 

the UNH Organic Dairy Research Farm, but the fortunate confluence of events was helped along 

at each step by many good people who supported and advanced the work. 

 

One of the most rewarding parts of working with the SARE program on this project was the 

wonderfully creative and innovative approach to agricultural research taken by the Board of the 

Program, and those managing the program, especially Vern Grubinger, Director of the Program, 

David Holm, who was our primary program manager throughout the life of the grant, and 

Kathleen Newkirk who joined with David on annual site visits and provided important feedback 

from her experiences working with both forest and agricultural systems.  Presentations to the 

Board and managers were always open events with wonderful give and take of ideas.  Everyone 

involved on the USDA side seemed to assume that innovative approaches were to be expected.  

The questions were often about “what is next” based on the most recent results, and always with 

an eye to implementation for the benefit of farmers. 

 

Another important component leading to the success of our research program, to the extent 

evidenced by this report and previous papers, was the extended timeline of the grant.  

Recognizing that ecosystem-level research takes time, the SARE Board and Management 

defined the grant to be funded as a series of three, 3-year increments, assuming good progress 

toward proposed goals in each 3-year period.  Completing the multiple goals of the proposal, and 

especially working through the logistics of construction and testing of major facilities, made the 

extended time frame essential. 

 

The list of people at UNH who contributed to this project is almost too long to enumerate (Table 

P.1).  While it could be argued that all of these folks were just doing their jobs, conflicting 

priorities and resource scarcity at universities always require that choices be made.  Each person 

in the table helped to make this project possible.   

 

While physical and administrative resources at a Land Grant University are essential to carrying 

out the kind of project reported here, perhaps the most valuable resource is the pool of energy 

and enthusiasm and ability represented by students.  Some of the stories about student 

involvement are presented in Chapter 1, and all those involved in the work are included in Table 

P.1.   
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Of special note are the many contributions made by Matthew Smith.  Matt spent a total of 4 

years designing, redesigning, rebuilding, debugging and operating both the wood shaving 

machine and the composting facility, and was indefatigable in that effort.  Most of what is 

reported here would not have been possible without him. 

 

External collaborators also offered support and crucial initial information.  Foremost among 

these was our long-standing collaboration with Brian Jerose and Jason McCune-Sanders of 

AgriLab Technologies in Enosburg Falls, VT who designed the heat exchange system for the 

Table P.1 List of Participants in and Supporters of the UNH Agroecosystem Project 

 

Lead Investigators 

    John Aber, Bill McDowell, Matt Davis, Charles Schwab, Kevin Brussel 

 

Graduate Students 

  Ph.D.: Matthew Smith, Allison Leach, 

  Masters: Ashley Green, Catherine Dunlap, Michelle Galvin, Charles Simms, Jennifer 

Campbell, Shan Zuidema 

 

Undergraduate Students 

  Honors and Capstone Projects: Nichole Williamson, Dena Hoffman, Gabriel Perkins,  

      Amy Lamb 

  Presenters at the Undergraduate Research Conference: Margaret Phillips, Brian Godbois, 

Makenzie Benander, Paul Pellissier, Bella Oleksy, Jacki Amante, Bryan Vangel, Alyssa 

Reid, Joshua Cain, Spencer Tate, Elizabeth Harvey, Andrew Morehouse, Rena Caron 

   Lab and Field Assistants: Patrick Wheeler, Sarah Ehrmentraut, Pia Marciano, Zach 

Charewicz, Katerina Messologitis, Emily Dutton, Andrew Moriarty, Pat Cota, Helen 

Clark, Cathleen Turner, Joshua Trott 

 

Collaborators 

   Agrilab Technology – Brian Jerose, Jason McCune-Sanders 

   USDA-ARS  Tim Griffen (now at Tufts University), Sarah Goslee, Kathy Soder 

   University of Maine Extension – Richard Kersbergen 

 

SARE Grant Administrator and Reviewers 

   Vern Grubinger, David Holm, Kathleen Newkirk 

 

UNH Administration – College of Life Sciences and Agriculture 

   Jon Wraith, Dean of the College and Director of the NH Agriculture Experiment Station 

   Anita Klein, Associate Dean 

 

Operations at the Organic Dairy Research Farm 

  Ryan Courtright, Farm Manager  

  Isagani Kimball, Lead Farm Worker 

  Tom Oxford, NHAES Farm Manger 
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facility, and the software to manage aeration times and record data.  The value of the high-

resolution data on performance of the composting system is demonstrated in chapter 4.  

Colleagues at the USDA Agricultural Research Service (ARS) offices in Maine and 

Pennsylvania, especially Tim Griffin (now at Tufts University), Sarah Goslee and Kathy Soder, 

carried out an initial, very detailed analysis of soil and pasture conditions at the Farm.     

 

Purpose and Structure of This Report 

 

Beyond capturing the history of the project, this report will present a summary of the major 

research efforts completed, and will conclude with a review of findings with the highest potential 

for economic value, and a specific proposal for implementation of a compost-greenhouse 

connection (Epilogue).  As the project progressed, goals and emphasis changed a bit, but 

generally held true to the outlines in Figures P.1 and P.2.  The full text of all three 3-year 

proposals, as well as much additional information summarized in this report, can be found on the 

projects website [1].   

 

This report is not intended to be in the format of a peer-reviewed publication.  As presented in 

Chapter 2, many of the central findings have already appeared in both academic and professional 

outlets.  Results summarized in Chapters 4-6  are elaborated in two Ph.D. dissertations by 

Matthew Smith and Allison Leach [87, 53] produced at the University of New Hampshire.  It is 

our intention that the results contained here will be accessible to practitioners and the public, so 

the presentation will be more narrative than scientific, the units are English rather than metric, 

and the discussions of methods and statistics, for example, are truncated.   

 

Chapter 1 reviews the role of early student engagement in the project, and presents some results 

that put the project into the larger context of the operations of the ODRF.  Also included is a 

detailed discussion of an early student honors thesis that provided preliminary data on 

composting with heat recovery.  

 

Chapter 2 presents a description of the current state of the ODRF, and reviews results from 

previously published research.  Summaries and references are included for a survey of dairy 

farmers in New England, operations of the wood shaving machine, and initial results on heat 

generation and capture in the UNH ASP/HRC facility.  As full results are already available in the 

open literature, this chapter will highlight only the most important and operations-relevant 

findings.  

 

Chapter 3 reviews composting as an agricultural waste management strategy as well as details 

about the size and operation of the composting system constructed at the ODRF. 

 

Chapter 4 presents detailed measurements not previously published on energy generation and 

capture for the ASP/HRC system at the UNH ODRF, and presents methods for extrapolating all 

available data to total annual values for the full facility. 

 

Chapter 5 begins to deal with the by-products of the composting process.  In particular, data are 

presented on the trace gas emissions in the exhaust from the facility during full operation. 

 



10 
 

Chapter 6 presents results of a study on the performance of simple organic biofilters in terms of 

removing ammonia from the exhaust streams measured in chapter 5. 

 

Chapter 7 extends the analysis of environmental impacts to include water quality, focusing on 

nitrogen concentrations in samples from groundwater wells located across the farm property, and 

surface water in a small creek draining from the farm pastures. 

 

Chapter 8 takes a broader view of potential nitrogen issues by developing a complete nitrogen 

budget for the farm and estimating two operational characteristics applied to farms around the 

world: nitrogen use efficiency and nitrogen surplus. 

 

Chapter 9 begins by estimating the amount of compostable material generated by UNH and the 

Durham community, then uses three methods to calculate the amount of heat energy that could 

be generated from this material, and compares this with measured heat demands from 

greenhouses at the UNH agricultural research farms.  The goal is to assess the potential for 

linking ASP/HRC systems with greenhouses to reduce heating costs, enhance production and 

extend the useful growing season. 

 

In the Epilogue we highlight two results from the study that we feel offer viable economic 

opportunities.  The first is to reduce bedding costs for farmers and generate income for operators 

by creating either private or cooperative enterprises to produce bedding from low quality, on-

farm softwood resources.  The second is to extend high tunnel greenhouse production beyond the 

normal growing season using heat generated by ASP/HRC systems.  Four potential applications 

of this concept using existing or proposed high tunnels on the UNH campus are presented. 
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Chapter 1: Initial Steps and Preliminary Investigations – John Aber 

 

There is one important component to any project at a research university that is key to the 

success of the endeavor – the students who become involved.  The excellent work by both 

undergraduates and graduate students on major parts of this project are reported in some detail, 

with those students as co-authors, in chapters 2 through 8, but some important preliminary 

information, and also some inspiration for the lead investigators, came from undergraduates 

initially drawn to the goals of the project. 

 

Just as the project was getting underway, the opportunity was offered to first-year students in 

Environmental Science to do field work at the Organic Dairy Research Farm (ODRF) that would 

be of relevance to the grant.  Several jumped at the chance to get involved in real research 

projects.  The team (Figure 1.1)  surveyed the wood resource at the ODRF, both standing 

biomass and annual increment, and determined the sustainable yield from the approximately 170 

acres of woodlot.  The biomass and energy content of that wood was compared with farm energy 

consumption and bedding purchases, and it was determined that those woods could be managed 

sustainably to provide the Farm’s bedding requirement indefinitely.   

 

 

 

 

 

 

 

 

Projects in another class developed proposals for solar, wind, and geothermal energy for the 

farm, in the context of the energy budget of the Farm, with results presented at the UNH 

Undergraduate Research Conference.  Graduate students working with principle investigators on 

the project developed data sets and models on hydrology of the Farm, including movement of 

some key chemicals, and a full report on the water use footprint of the Farm operation.  Reports 

and presentations can be found at:  https://mypages.unh.edu/agroecosystem/hydrology-and-water-balance 

(https://mypages.unh.edu/sites/default/files/agroecosystem/files/materials_and_element_cycling_-_campbell_davis_presentation.pdf 

https://mypages.unh.edu/sites/default/files/agroecosystem/files/materials_and_element_cycling_-_davis_report.pdf 
 

Two honors undergraduate students pursued thesis work at the farm that offered initial 

information relevant to major efforts on nitrogen cycling and energy generation by aerated static 

pile composting.  While these efforts were later refined substantially, as seen in the following 

chapters, the educational value of SARE support was clear, and the results from this early work 

provided guidance for later and more detailed studies. 

 

Table 1.1 Harvestable wood compared 
with demand for bedding at the Organic 
Dairy Research Farm at UNH - full 
presentation at: 
https://mypages.unh.edu/sites/default/files/agroecosyst
em/files/energy_use_and_product_-
_aber_presentation.pdf 
 

Wood Production        
          10.1 tons/acre.yr   152 tons/farm.yr 
Converts to  
          840 “cords” of bedding per year 
Bedding Demand 
         135 “cords” per year 
 
 

Figure 1.1 First-year Environmental Science 
student team that measured the wood 
resource at the ODRF: 
Brian Godbois, Makenzie Benander, Paul Pellissier, 
Bella Oleksy, Jacki Amante, Bryan Vangel, Alyssa 
Reid. 

https://mypages.unh.edu/agroecosystem/hydrology-and-water-balance
https://mypages.unh.edu/sites/default/files/agroecosystem/files/materials_and_element_cycling_-_campbell_davis_presentation.pdf
https://mypages.unh.edu/sites/default/files/agroecosystem/files/materials_and_element_cycling_-_davis_report.pdf
https://mypages.unh.edu/sites/default/files/agroecosystem/files/energy_use_and_product_-_aber_presentation.pdf
https://mypages.unh.edu/sites/default/files/agroecosystem/files/energy_use_and_product_-_aber_presentation.pdf
https://mypages.unh.edu/sites/default/files/agroecosystem/files/energy_use_and_product_-_aber_presentation.pdf
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Gabe Perkins produced 

a first rough estimate of 

the nitrogen cycle and 

total nitrogen balance of 

the Farm (Figure 1.2).  

Using data from 

purchases and sales of 

grain, milk and other 

commodities, as well as 

inputs from 

precipitation, this first 

study estimated a net 

nitrogen surplus (inputs – 

outputs) at about 62 lbs 

per acre (69 kg/hectare) per year.  A much more complete analysis by Allison Leach in her 

dissertation [53] resulted in a similar conclusion; that imports of grain resulted in nitrogen inputs 

to the Farm that were substantially greater than losses through the export of milk (see Chapter 8).   

 

Before the construction of the commercial-grade aerated composting facility described in 

chapters 3 and 4, senior honors student Amy Lamb tested low-cost methods for aerating compost 

piles to speed decomposition and also to generate heat [51].   

 

Manure stockpiled before spreading can be an important source of both water and air pollution.  

At the establishment of the ODRF, manure/bedding wastes were held for up to 2 years in 

unmixed, non-aerated piles.  Water quality around these piles was low, based on both visual 

criteria (Figure 1.3) and measurements of nitrate in groundwater wells adjacent to the piles 

(Chapter 7).  For her thesis, Lamb took three different approaches to questions of heat and trace 

gas generation in manure/compost systems.  The first was to measure the temperature and gas 

concentration profiles in the non-aerated manure piles stored at the Farm (Figure 1.3).  The 

second and third involved measurements from aerated static piles at two different scales.  For all 

three, gas concentrations were measured with a GFM-400 a landfill gas monitor produced by 

Gas Data and temperatures using manual, analog probes [51]. 

 

Figure 1.2 A first estimate of the nitrogen cycle and balance of 
the UNH Organic Dairy Research Farm (Perkins 2010). 
 

Figure 1.3 Images of stockpiled manure at the ODRF prior to the construction of the 
new composting facility.  Impacts on local water quality are clear.  Measurements of gas 
composition within the pile showed high levels of methane [51].  
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For the non-aerated pile at the ODRF, ten 

locations were sampled at one, two and 

four-foot depths for carbon dioxide, 

oxygen, methane, and other gases, as well 

as temperature.  Not surprisingly, 

methane concentrations were high in this 

pile, and increased with depth.  There 

was an inverse relationship between the 

concentrations of oxygen and methane in 

these preliminary measurements (Figure 

1.4).  LEL is the lower explosive limit, 

which for methane is 5%. 

 

For comparison with these commercial-

scale static piles, a similar procedure was 

applied to material in an Aerated Static 

Pile/Heat Recovery Composting 

(ASP/HRC) system at the Diamond Hill Custom Heifer operation in Enosburg Falls, Vermont.  

This is the location of the first installation of an ASP/HRC system in the northeast (again, see 

full discussion of ASP/HRC systems in chapter 3).  Sampling was carried out over the course of 

a 14 hour period and included times with the aeration fan on, and times with the fan off for up to 

4 hours. 

 

An important result from this comparison of sites is that methane concentrations were below 

detection limits at all times and all depths in the aerated pile even during one trial when the fan 

had been off for 4 hours.  The 4 hour, fan-off period, longer than any that would occur during 

normal operations, was not sufficient to induce methane production.   

 

There was also a difference in temperature profiles (Figure 1.5).  Temperature peaked at the 

bottom of the aerated pile, with highest values at the top of the static pile.  One explanation for 

this difference could be that colder air entering the aerated pile continues to warm as it passes  

down through the pile, and reaches a 

maximum temperature just before exiting the pile and entering the heat exchanger.  For the static 

pile, higher temperatures at the top reflect higher concentrations of oxygen, and hence higher 

rates of decomposition, with heat being conducted down through the pile to areas of lower rates.  

Figure 1.4 Changes in measured concentrations 
of methane and oxygen with depth in non-
aerated manure piles at the ODRF [51]. 

Figure 1.5 Changes in temperature 
measured a different depths in a large 
static pile at the ODRF, and a 
commercial-scale Aerated Static 
Pile/Heat Recovery Compost system at 
Diamond Hill Heifer operation in 
Enosburg Falls, Vermont [51].   Aerated 
pile had slightly higher tempeatures 
following 4 hours with the fan off. 
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In the initial absence of the commercial-scale composting facility built at the ODRF, Lamb 

tested a much simpler approach to aerating static piles, and generating usable heat as well.  

Replicate piles roughly 10 feet square were established (Figure 1.6).  In one trial, perforated 

leach field pipes were laid, covered in wood chips, and then with a mixture of dairy manure and 

spent animal bedding.  The pipes were then connected to a fan driven by a solar panel which 

could be used to draw air down through the piles.  In a second trial, the pipes were set vertically 

in the pile to facilitate passive aeration, with no fan connection.  A third trial was a control pile 

without pipes.  Piles were initially about 6 feet high, and the same methods were used to measure 

temperature and gas concentrations as for the large static and static aerated piles described above 

(Figure 1.6). 

 

All three trials, including the horizontal pipes with the fan off, initially reached temperatures near 

or above 140oF at the 1 foot depth through passive aeration (Table 1.2).  Temperatures were 

similar or higher down through the pile underlain with horizontal pipes, while the vertical pipe 

and control piles were lower at the 4 foot depth.   

 

 

 

 

 

 

 

 

 

 

 

For these small piles, aeration actually had a negative effect on temperature (Figues 1.7), at least 

at the rates of aeration used in this trial, due to the volume of cooler ambient air drawn into the 

pile.  Aeration times and rates would have to be moderated to maintain a high temperature, and 

to allow capture of heated vapor from the pile (See Chapters 4 and 9).  As with the Vermont 

sampling, methane concentrations were below detection limits at all times both within the piles 

and in vapor exhaust created with the fan on.  

 

Figure 1.6 Establishment of areas for measurement of temperature and gas concentrations 
in small compost piles, and sampling method used on all piles.  

Table 1.2 Temperature by depth in aerated and control piles 
after 7 days incubation 
                                   Pipe Location 
  Depth        Horizontal        Vertical            Control 
  1 foot  147  139  138   
  2 feet  156  146  150 
  4 feet  149  112  122 
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From this work, Lamb concluded that smaller piles may still be suitable for achieving the goal of 

more rapid aerobic decomposition and the elimination of methane emissions from farm wastes, 

but larger piles, or slower aeration rates, might be required to sustain usable heat generation (see 

Chapters 4 and 9).   

 

A final conclusion to be drawn from this work, relevant to our analysis of the potential value of 

ASP/HRC systems in the University of New Hampshire context (Chapter 9 and Epilog) is that it 

is possible to develop and operate simple and inexpensive alternatives to the very high end, 

research-grade facility described in Chapters 3 and 4. 

 

 

 

 

  

Figure 1.7 Changes in pile temperature 
over time for small, aerated pile with 
horizontal leach field pipes under the 
composting material.  Aeration was 
passive during periods with Fan Off, 
and active during the short period 
with the Fan On. [51].  
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Chapter 2: Current Status of the UNH Organic Dairy Research Farm and a Summary of 

Previously Published Research – Matthew Smith and John Aber 

 

Current Status of The Organic Dairy Research Farm – and a Valuable Year 0 Assessment 

 

The research presented in this publication would not have been possible without the pre-existence of 

the Organic Dairy Research Farm (ODRF).  Chapter 1 presents some early descriptions and early 

measurements made possible by this unique resource, which remains the only Organic Dairy 

Research Farm that is part of and located near the main campus of a Land Grant University.  What is 

this farm like, how does it operate, and how representative is it of New England dairies? 

 

The ODRF encompasses two adjacent properties, the Burley-Demeritt Farm and the Dudley Lot.  

These Farms are bounded by Lee Hook Road and the Lamprey River (with small private inholdings) 

in the town of Lee, NH (Figure 2.1).  Farming on both properties dates back to the 1700s, with 

current land use divided between pastures and managed woodlots.  The total area for both is about 

300 acres, of which about 170 are in woods, and about 110 are in pasture and forage production.  

The remaining area includes barns, roads and laneways.  Of the wooded acres, 17 are classed as 

wetlands with limited accessibility for harvest [112]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Aerial view 
of the UNH Organic 
Dairy Research Farm in 
Lee, NH 
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The Farm is managed and operated as much like a small-scale New England organic dairy farm as 

possible, while still allowing for feeding trials and other experiments.  The ODRF generally milks 

40-50 registered Jersey cows and houses an additional 40-50 dry cows, heifers and calves.  All stock 

are grazed on certified organic pastures from early May until early November supplying the bulk of 

the animals forage needs. To supplement pasture in the summer, milkers are also fed baleage (an 

ensiled forage product harvested from the farm fields) and nutritional concentrates twice daily, post 

milking, to meet additional energy and dry matter intake requirements. 

 

Cows are housed for the winter in a 32’x 144’ open bedded back barn with a 70’x144’ exercise yard, 

facilitating overall cow comfort.  A calf barn is used to house young stock, complete with southern 

exposure, natural ventilation and individual calf pens.  Dry cows and heifers are housed in a 20’x40’ 

three sided bedded-pack structure facing south. The majority of the structures on the farm including 

the milk house and milking parlor are converted farm structures. 

 

The bedded pack barn uses wood shavings for bedding, and is emptied 2-3 times per year.  Removed 

materials become feedstock for the composting facility described in detail in Chapter 3.  The yard is 

scraped daily and manure is stockpiled until transferred to the composting facility.   

 

The Farm is run as a research facility, and while meticulous financial records are kept, the Farm 

is not managed to maximize financial return.  This approach affects feeding regimes and the 

handling of waste streams. 

 

In the Prologue, we discussed the importance of early connections with the four major producers 

of organic milk in the country, and how that led to the goals of our agroecosystem project.  There 

were other early cooperators as well who were drawn to the unique characteristics of the Organic 

Dairy Research Farm (ODRF).  Among these were researchers at the USDA Agricultural 

Research Service offices in Maine and Pennsylvania, including Tim Griffin, Sarah Goslee and 

Kathy Soder.  They established an intensive 

sampling grid (Figure 2.2), and applied nationally 

standardized methods to complete detailed 

measurements and maps of soil and pasture 

conditions.  These valuable products offer an 

important “before” analysis of initial conditions at 

the time of establishment of the ODRF and the 

initiation of the agroecosystem project.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Grid of locations used by 
USDA-ARS researchers to measure 
soil and pasture conditions at the 
UNH ODRF in 2008.  
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Previously Published Research 

 

Many of our research results relating to the assessment of bedding needs of New England dairy 

farmers, the production of bedding from low quality softwoods, and the construction, operation and 

energy generation and capture of the ASP/HRC system at the UNH Organic Dairy Research Farm 

(ODRF) have been published in both peer-reviewed and practitioner-oriented outlets.  Rather than 

repeat those presentations here, we will list the papers and outlets, and summarize the major findings 

that relate to the core goals of the proposal. 

 

These publications are grouped under three broad topics: 1) A survey of characteristics and bedding 

preferences of both organic and conventional dairy farmers in New England, 2) Testing and 

economic analysis of the value of the shaving machine for producing bedding, and 3) Design, 

construction, operation and heat generation of the ASP/HRC system at the UNH ODRF. 

 

Survey of New England Dairy Farms 

 

 - Simms, L., M. Smith, J. Alvez, J. Colby, and J. Aber. 2015. Alternatives for rising bedding costs 

in New England dairies. Dairy Briefs Vol. 62 (Winter). University of New Hampshire Cooperative 

Extension, Durham, NH. 

 

 - Smith, M.M, C.L. Simms and J.D. Aber. 2017. Animal bedding cost and somatic cell count 

across New England dairy farms: Relationship with bedding material, housing type, herd size, 

and management system. The Professional Animal Scientist 33:616-626 

 

Major points in these two papers of relevance to this project include: 1) that the UNH ODRF is 

near the median among New England dairy farms in terms of acreage, herd size, amount of 

pasture, and amount of woodlands, 2) Wood-based materials are preferred for bedding among 

organic and conventional dairy farmers, although price and availability often dictate the use of a 

wide range of other materials, and 3) many organic dairy farmers expressed an interest in the 

possibility of being part of a cooperative effort to produce bedding with a wood shaving 

machine. 

 

Operation and Economic Analysis of a Wood Shaving Machine for the Production of 

Bedding 

 

 - Smith, M.M., J.D. Aber and T. Howard.  2017. Economic viability of producing animal 

bedding from low quality and small diameter trees using a wood shaving machine. The 

Professional Animal Scientist 33:771-779 

 

 - Smith, M.M, C.J. Park, C. Andam and J.D. Aber. 2018. Utilization of low grade wood for use 

as animal bedding: A case study of eastern hemlock. Journal of Forestry 116:520-528  

 

Results of extensive trials with the operation of the particular model of wood shaving machine 

purchased for this project suggest that the size, cost and operating time requirements are too 

great to be supported by a single, average-sized New England dairy farm.  However, the options 

of a regional cooperative or a single-purpose private enterprise, or other organizational structure 
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that could keep the machine running for a majority of a year, could prove profitable and 

sustainable. 

 

The second paper here tested the value of eastern hemlock shavings as a bedding material, and 

found it to be as effective at reducing microbial activity as eastern white pine shavings, and have 

a lower cost for the wood resource. However, the moisture absorption capacity of eastern 

hemlock was significantly lower than that of eastern white pine, indicating a tradeoff between 

the two species for use as bedding.   

 

Design, Construction, Operation and Performance of an Aerated Static Pile/Heat Recovery 

Composting System 

 

 - Smith, M. and J. Aber. 2014. Heat recovery from Compost. BioCycle 55:26-28 

 

This paper introduced the concept of Aerated Static Pile/Heat Recovery Composting to the 

professional composting/waste management community, and included the first published images 

of the UNH ASP/HRC facility. 

 

 - Smith, M. M., and J.D. Aber. 2014. Heat recovery from compost: A guide to building an 

aerated static pile heat recovery composting facility. Durham, NH: University of New Hampshire 

Cooperative Extension; Research Report. 81 p. 

 

 - Smith, M. and J.D. Aber. 2017 Heat Recovery from Compost: A Step-by-Step Guide on Building 

an Aerated Static Pile Heat Recovery Compost Facility. University of New Hampshire Cooperative 

Extension, Durham, NH. 72pp. 

 

These two publications present in great detail the specifications used to build the UNH ASP/HRC 

facility. 

 

 - Smith, M., J.D. Aber and R. Rynk. 2017. Heat recovery from composting – a comprehensive 

review of system design, recovery rate and utilization. Compost Science and Utilization 25 

(sup1) S11-S22.   

 

This systematic review describes the methods used historically and currently for capturing the 

heat generated by aerobic composting.  It has become one of the most frequently accessed 

articles this journal has ever published. 

 

 - Smith M.M and J.D. Aber. 2015. Heat extraction & utilization from composting as an 

alternative to anaerobic digestion for reducing energy costs at dairy farms. UNH Dairy Report 

2015: New Hampshire Agricultural Experiment Station and University of New Hampshire 

Cooperative Extension; 2015 pp. 33-35. 

  

 - Smith, M. and J. Aber. 2017. Recover energy from composting to heat water on farms. 

Progressive Dairyman 19:61-63 and Progressive Dairyman Canada. 3:63-65. 
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These two present the concept and potential value of capturing heat from compost to a general 

practitioner audience. 

 

 - Smith, M.M and J.D. Aber. 2018. Energy Recovery from Commercial-Scale Composting as a 

Novel Waste Management Strategy. Applied Energy 211:194-199 

 

This paper is the first to present data on the rate of actual heat capture at the UNH ASP/HRC 

facility.  A major point from this paper is that the actual rate of capture and retention in a system 

that uses a heat exchanger/water tank storage method is highly dependent on the temperature of 

the water in the storage tank (see more discussion of this in chapters 3 and 4).  This means that, 

to maximize heat capture, the composting system needs to be connected to another system that 

exhibits a relatively constant requirement for the heat produced. 

 

A second point is that, working at maximum efficiency, the system can generate and capture as 

much as 900 BTU/min from each of 4 sets of paired bays in the system, during periods of active 

aeration.  See Chapters 4 and 9 for extension of these calculations to full operation for a year. 

 

 

 

  



21 
 

Chapter 3: The Aerated Static Pile/Heat Recovery Compost System at the University of 

New Hampshire – John Aber and Matthew Smith 

 

Introduction 

 

Definitions of sustainability might include the intelligent use of integrated systems of production, 

waste reduction, and recycling that provide for societies needs while reducing environmental 

impacts.  Sustainable ventures need to succeed in three domains simultaneously: economic, 

environmental and social.  Agriculture is critical for feeding a growing world population, but is 

also an important component of the overall impact of human activity on the global ecosystem.  

Waste products produced by agriculture augment both climate change and reduction in water 

quality.  Proposed solutions to the problem of minimizing agriculture’s impact also need to 

succeed in all three domains, meaning that financial benefit and social acceptance are required 

for a proposed method for reducing environmental impacts to gain acceptance. 

 

Dairy operations are the largest component of the food production system in New England.  

Unlike consumption of meat, pulses and grains, a significant fraction of dairy products consumed 

in the region is produced here as well, even though the overall number of dairy farms continues 

to decline [115].  In keeping with the goals of this Agroecosystem study funded by USDA-SARE 

and the NHAES (see Prologue), we worked on developing and testing new technologies and 

processes that could increase the financial and environmental sustainability of organic diaries in 

the region (see summary in Chapter 2).  A centerpiece of this research has been developing a 

unique set of information on a relatively new method for composting organic farm wastes, and 

generating usable heat as well. 

 

In this chapter we review composting as a waste management practice, and describe in detail the 

Aerated Static Pile/Heat Recovery Composting (ASP/HRC) system at the University of New 

Hampshire (UNH) Organic Dairy Research Farm (ODRF).  The Farm is operated as a research 

unit of the New Hampshire Agricultural Experiment Station (NHAES). 

 

Composting as a Waste Management Practice 

 

As limitations on disposal of organic wastes in landfills increase in the U.S. and Europe [8, 24, 

42], composting is receiving increased attention as an alternative waste treatment method.  In 

particular, Aerated Static Pile (ASP) composting is emerging as a viable method for reducing 

labor and space requirements for processing a wide variety of materials.   

 

Composting is the process by which organic materials are broken down by microorganisms into 

a stable, pathogen-free, humus-like product [24, 43]. Composting requires a carbon source (e.g., 

plant litter, crop residue, wood chips), a nitrogen source (e.g., animal manure, human waste, food 

waste), and microorganisms that then decompose the feedstocks [81]. Compost can be a 

preferred soil amendment because it provides nutrients in an organic, slow-release form, while 

also enhancing soil structure and organic matter content, improving water retention capacity and 

reducing rates of nutrient losses [78, 79, 80]. Land application of compost has also been shown 

to promote carbon storage [20]. 
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Composting is an aerobic process, where oxygen is provided to feedstocks passively, 

mechanically, or through forced aeration [82]. One of the primary byproducts of this process is 

heat. This is not to be confused with anaerobic digestion, which processes feedstocks in an 

oxygen-limited, anaerobic environment, where one of the primary byproducts is methane (CH4).  

 

The composting process encompasses three unique stages which each have distinct microbial 

communities and physical characteristics [20, 3.9, 3.10, 105]. The three stages are an initial 

mesophilic stage, a thermophilic stage, and a second mesophilic or maturation phase. The 

composting process is controlled by oxygen availability, the material’s moisture content, particle 

size and bulk density, and the ratio of carbon to nitrogen, as well as temperature, pH, and the 

microorganisms present [24, 70, 81].  

 

There are a number of composting methods utilized by both farmers and commercial composters. 

The following is a brief summary of the more common on-farm composting methods, which are 

described by Rynk et al. [82].  An updated version of this technical guide is due out in the 

summer of 2020. 

 

Static pile, passive composting systems involve stockpiling wastes and allowing the materials to 

decay slowly over time, without being turned or managed in any way.  While this represents the 

lowest cost option, it also requires the longest time to reach a finished product. This type of 

composting system, especially if outdoors and uncovered, also has the greatest risk for odors and 

environmental pollution, including leaching of nutrients to groundwater and the production and 

release of methane (CH4), a powerful greenhouse gas (See Chapter 1). 

 

Conventional methods for increasing aeration and speeding the decomposition process include 

the use of windrowed piles in which materials are held for up to 1-2 years and turned frequently 

to assure mixing and complete aeration. This method is slow and labor intensive and is most 

frequently used by backyard gardeners and other small-scale operations. In the U.S., commercial 

systems processing food wastes are required to maintain windrow temperatures > 130oF for 15 

days straight with 5 turns of the pile for the final product to be saleable.  While more material 

can be processed more rapidly than with passive systems, the extra machinery and labor increase 

the cost of the operation, and heat recovery, if attempted, is more difficult and less efficient.   

 

Passively-aerated composting systems involve placing mixed feedstocks over a collection of 

perforated pipes (usually 4 inch diameter drainage pipe 4 feet apart). As the feedstocks begin to 

compost and the microorganisms generate heat, that heat raises due to convection, which pulls 

fresh air into the bottom of the pile through the pipes (see Chapter 1).  While more efficient than 

passive systems, the primary drawback is adding and removing the composting feedstocks 

without damaging the exposed pipes.  

 

Aerated Static Pile Composting Systems with Heat Recovery 

 

In contrast to the previously mentioned composting processes, the ASP approach does not 

require turning during the active composting phase, reducing labor and fuel costs.  Organic 

wastes are loaded once onto a concrete floor in which perforated pipes have been embedded.  

The pipes are connected to a manifold system and fan that either draws air down through the 
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decomposing feedstocks (negative aeration), or forces air up through the material (positive 

aeration) (Figure 3.1, see detailed discussion of the UNH system in the next section).  In negative 

airflow applications, the process creates a contained airflow of heated vapor that can be directed 

through a heat exchanger and/or biofilter to reduce odor and other pollutants.  Capital costs for 

an ASP composting can be higher than for simpler conventional systems, but as the piles do not 

need to be turned, labor costs are lower and the amount of space required for the composting 

facility is smaller due to much faster time to produce finished compost. 

 

 

 

 

 

 

 

 

 

ASP composting was first described in 1975 [21, 30] and used initially for processing of sewage 

sludge.  Economic analyses of this method suggest its value for wastewater sludge processing 

[120] and the concept has been expanded to paper sludge and vegetable waste from greenhouse 

production and other food system materials [14, 38, 104], including animal wastes [122]. 

Detailed research on the method has included analyses of microbial communities over time [58].  

Models of the process have been developed and reviewed [58, 57, 59].  Reviewed models focus 

primarily on energy balance within the material itself, with the scope of validation limited to 

forced aeration systems [52].   

 

In addition to a contained and faster composting process, the vapor captured in an ASP system 

represents a potentially harvestable source of heat energy [89].  Heat generated by microbial 

activity during decomposition can be captured and used for other purposes, such as heating 

buildings and greenhouses.  Heat in the vapor can be used directly or routed through a heat 

exchange system and stored as hot water [89, 104, see also Chapters 4 and 9].  Methods for 

recovering heat from ASP vapor streams (an ASP/HRC system) have emerged in the last several 

years and have been implemented so far only in a small number of facilities [3.25].  Reviews of 

heat capture systems have appeared only recently [3.25] and few models of commercial-scale 

systems have been reported.  As a new technology, few estimates of usable energy generation 

and capture are available for commercial scale ASP/HRC systems [3.25, 92]. 

 

Aerated Static Pile (ASP) composting, then, offers the potential for faster processing of organic 

wastes, reducing organic waste disposal in landfills, and also generating a saleable soil 

amendment.  When combined with a heat recovery System (ASP/HRC), the benefits also include 

Figure 3.1 Conceptual diagram of 
an Aerated Static Pile/Heat 
Recovery Compost (ASP/HRC) 
System [88]. 

Headwall 
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usable heat energy and the potential to offset greenhouse gas emissions.  In the context of an 

integrated food system, ASP/CHR systems can help minimize the environmental impacts of 

agricultural production and can be applied at a range of scales. 

 

The Aerated Static Pile Heat Recovery Composting System (ASP/HRCS) at the University 

of New Hampshire 

 

In 2013, the New Hampshire Agricultural Experiment station (NHAES) constructed the first 

ASP/HRC facility at a research university at the Burley-Demeritt Farm in Lee, NH, USA, the 

setting for the University of New Hampshire’s Organic Dairy Research Farm [89, 90].  The farm 

is part of the University of New Hampshire and is managed and operated by the NHAES.   

 

The facility was designed in conjunction with Agrilab Technologies ®, using concepts developed 

from their first ASP/HRC system designed for a heifer operation in Vermont, USA [104].  

Funding for construction of the facility was provided by an anonymous donor, and the building 

was later dedicated to, and named for, alternative energy pioneer Joshua Nelson, at the donor’s 

request (See Prologue). 

 

 

 

The Joshua Nelson Energy Recovery Composting Research Facility is a pole barn structure that 

is about 100’ wide, 50’ deep and 25’ tall (Figure 3.2a).  It has 4 pairs of replicate bays (8 bays 

total) into which feedstocks are loaded (Figure 3.2b, Figure 3.3).  These replicate bays allow 

experimental trials with different feedstock mixes, aeration times and irrigation treatments.  Each 

of the 8 bays are aerated by two pipes embedded in the concrete floor, for a total of 16 pipes. 

These aeration pipes are connected to a 1 HP fan which pulls ambient air through the piles for 

microbial oxygenation.   A programmable logic controller (PLC) operates gate valves which 

control the timing of aeration for each bay. The heated compost vapor that is pulled from the 

composting feedstocks is sent through a concrete headwall, into a manifold of PVC pipes and 

through a heat exchanger system developed by Agrilab Technologies ® [90], which stores heat 

in a 295 gallon hot water tank (Figure 3.1).  The fan and valves are the only mechanical parts of 

the system which require only dollars per day in electricity to operate. 

 

Figure 3.2 Joshua Nelson Energy Recovery Compost Facility located at the University of 
New Hampshire Burley-Demeritt Organic Dairy Research Farm in Lee, New Hampshire, 
USA. The images show A) the exterior doors to the facility where compost feedstock is 
loaded, B) piles of composting material in the facility, and C) the back of the facility where 
the gas exhaust from the facility is piped, allowing for heat recovery and measurements. 
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After passing through the heat exchanger, the cooled compost vapor is sent through a biofilter to 

scrub ammonia (NH3) and odor (see Chapter 6).  Temperature sensors located in each pipe 

exiting the compost chamber through the headwall allow continuous monitoring of vapor drawn 

from each bay (Figure 3.3).  Additional sensors are located in the inlet and outlet pipes on the 

heat exchanger, inside the water tank, and in the exhaust pipe leaving the building.  Two 

additional sensors record air temperature in the room in which the pipes and heat exchange 

system are located, and within an insulated section of that room in which the pipes leading from 

the headwall to the heat exchanger are shielded.  Two final sensors provide data on rate of air 

flow through the system (ft3/minute) and relative humidity of the vapor stream, which was near 

saturation throughout the system at all times.  Data are collected from all sensors at one minute 

intervals by a Web Energy Logger.  Both the control system and the data logging system were 

developed and installed by AgriLab Technologies ®.  In Chapters 4 and 9 we present data on 

temperature and airflow measured at each point in the system.   

 

The ASP/HRC composting facility processes dairy and equine manure, spent animal bedding 

(pine wood shavings), and waste feed hay.  The four pairs of bays are loaded and unloaded at 

different times so that materials of different mixtures, ages and stages of decay are present at any 

one time.  This variation widens the range of conditions under which data were collected and so 

enhances the generality of results.   

 

A complete description of facility design and cost can be found in [89, 90].  A descriptive video 

is available at:   https://www.youtube.com/watch?v=YNTX5vqN2Fs&feature=youtu.be 

 

 

  

Figure 3.3 Conceptual 
diagram of the UNH 
ASP/HRC system (Smith and 
Aber 2018).  This aerial view 
of the facility’s eight bays 
shows the direction of air 
flow from the piles to the 
heat exchanger.  Exhaust 
from the facility is directed to 
a biofilter (see Chapter 6). 

https://www.youtube.com/watch?v=YNTX5vqN2Fs&feature=youtu.be
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Chapter 4: Estimating Potential Total Energy Gain from a Multi-bay Aerated Static Pile 

Composting System with Heat Recovery – John Aber, Matthew Smith, and Allison Leach  

 

Introduction 

 

In an earlier paper [92], we reported results from short-term experiments on heat generation and 

capture from the UNH ASP/HRC system.  The data for that paper resulted from experiments in 

which the heat storage water tank was emptied and refilled with ground water at ~ 50oF.  

Compost vapor ranging up to 150oF was then drawn through the system, and the rate of 

temperature increase in the stored water used to calculate heat capture.  As the 3-4 hour 

experiments continued, the temperature of the water in the tank increased, narrowing the 

difference in temperature between the compost vapor and tank water (see Figure 4.1). 

 

In addition to establishing the range of possible energy capture rates from a single set of bays, 

the paper stressed the importance of the temperature difference between the heat source and heat 

sink in determining the rate of energy capture from the system.  This is not surprising in that any 

heat transfer process is a function of the temperature differential between source and sink. 

 

One important management principle to be drawn from this is that to maximize energy capture 

from this ASP/HRC system, the storage component should be tied to a relatively constant 

demand for the generated heat.  In other words, a relatively constant drain of heat from the water 

tank would be optimal.  In Chapter 9 we will discuss another option – using the heat directly in a 

greenhouse application, without the heat exchanger/storage tank component. 

 

The goal of this chapter is to estimate the total amount of heat energy that can be captured from 

the UNH ASP/HRC system over a full operating year.  To do this, we need to put the data on 

short-term energy capture [92] into the context of commercial operating conditions, including the 

fraction of time that a given pile is aerated per day, and changes in pile temperature over time.   

 

Under the farm operational conditions at the UNH ODRF, it is not possible to run enough 

controlled experiments to test all possible combinations of pile temperature, aeration time and 

material condition.  Instead, we have produced a simple, excel-based model that captures the 

behavior of the different parts of the system.  Here we test that model against measurements from 

the system, and then use the model to predict potential total annual heat capture. 

 

A Simple Model of the UNH ASP/HRC System  

 

As a simple physical system, the UNH facility can be described with a simple spreadsheet-based 

model that describes heat transfers as a function of empirically derived transfer coefficients 

applied to the measured gradient in temperature across any boundary.  The model developed is 

available on request of the first author.   

 

Comparisons among predicted and measured temperatures across the UNH system suggest that 

the model accurately captures the dynamics of that system (Figure 4.1).  In addition to 

supporting the general accuracy of this simple model, three points can be made that are relevant 

to system management and potential total heat yield. 
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First, Figure 4.1c shows both an accurate prediction of tank water temperature over time, and 

also re-emphasizes the importance of the gradient in temperature between vapor stream and tank 

water in terms of rate of energy capture.  During this trial, as the initially cool water is warmed 

by the vapor and approaches vapor temperature (Figure 4.1c), the rate of energy capture declines 

(green line). 

 

Second, both figure 4.1a and b show a systematic difference between predicted and observed in 

terms of vapor temperature that develops during the ~ 4 hour trial during which air was drawn 

continuously down through the pile (see Smith and Aber [92] for a complete description of these 

experiments).  This difference persists for the remainder of the data set, suggesting that the long 

aeration period reduced measured pile temperature, and that this reduction was not immediately 

reversed.   

 

Finally, Figure 4.1d presents data on how exhaust temperatures vary over both the regular 

management cycle, and the 4-hour experiment.  What this shows is that the exhaust gas will 

Figure 4.1 Model performance in terms of predicted (blue lines) versus observed (red 
lines) at 4 locations in the ASP/HRC system: A) At the headwall as the vapor exits the 
compost pile, B) As the vapor enters the isobar heat exchanger, C) Temperature of the 
water in the water tank – green line is energy capture (right axis), D) As the vapor exits 
the system as exhaust. 
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often still be at high temperatures, either at the beginning of an aeration cycle, or when the 

temperature of the water in the tank is elevated.   

 

In 2016, the long aeration time experiments were carried out repeatedly using vapor from a 

single set of bays.  While this provided the wide range of pile tempeatures required for 

developing the relationships captured in Figure 4.1 and Table 4.1 below, changes in pile 

temperature also show the impact of these multiple, long aeration times (Figure 4.2).  The normal 

pattern of rapid assymptotic increase in pile and vapor temperatures, followed by a slow decrease 

over a multi-week composting cycle, is disrupted during and following each extended aeration 

event.  Especially noticeable is the decrease following four consecutive days of extended 

aeration (days 136-139, May 16-19).  Return to previous or expected temperatures was delayed 

for several days.   

 

It is important to note that data from a previous analysis of shorter but variable aeration times 

more representative of normal composting operations [92] showed no significant effect of 

aeration length per cycle on vapor temperature.  

 

 

 

 

 

 

 

 

 

 

To the extent that the comparisons in Figure 4.1 demonstrate the ability of the model to emulate 

the function of the UNH ASP/HRC system accurately, we can use the model to predict the total 

potential energy capture from this system over periods from a day to a year. 

 

For the predictions that follow, we used a pattern of aerating for 40 minutes every 4 hours, for a 

total of 4 hours per day, with pile, tank and room (ambient) temperatures specified within the 

ranges measured at the facility.  Results (Table 4.1) emphasize the importance of three variables.  

As expected, water tank and pile temperatures, and the difference between the two, were the 

primary factors controlling energy capture.  Surprisingly, the ambient temperature in the area 

holding the water tank was also important.  The model, which includes data on changes in tank 

temperature when aeration is not occurring, contains a factor for energy loss to the surroundings.  

Even though the tank was well insulated, energy loss into the room holding the tank, which was 

not heated, was significant during periods of cold weather.  Negative values for heat capture 

Figure 4.2. Headwall 
temperatures for Bays 7 and 8 
for a 35-day period in May/June 
2016.  Arrows indicate days with 
long (3-4 hour) aeration trials.  
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result from energy loss from the tank to the operating room during periods where capture from 

the vapor stream is minimal. 

 

  
 

 Two Long-Term Data Sets for Annual Extrapolations 

 

To produce reasonable estimates of potential total energy capture for a full year from this facility, 

we need to specify aeration schedules and changes in pile temperature over the full composting 

cycle.  In commercial operations, aeration times are generally reduced as composting materials 

decay.  Aeration times can be higher during the initial, thermophilic phase of the composting 

process, and can be greater for heat removal purposes than needed to meet microbial demand for 

oxygen [82].  As the composting process continues, and the easily digestible feedstocks are 

consumed by the microbes, temperature starts to decline and so does the need for aeration. 

 

Figure 4.3 presents two example data sets collected as part of this study.  The first trial captures 

standard (or actually ideal) initial conditions and rates of heat generation over time.  Pile and 

vapor temperatures rise quickly to 150oF and decline slowly over the 150+ day composting 

period.  Material for the second trial was saturated with water at the beginning, and never 

achieved the maximum temperatures of the first trial, but temperatures also declined more 

slowly, and aeration times were longer.  During both trials, changes in the amount of aeration 

time was modified to simulate management practices in commercial operations.   

 

Tank Pile  60 70 80

90 150 27.5 57.1 72.0

140 13.1 42.6 57.5

130 -1.4 28.2 43.1

120 -15.8 13.7 28.6

110 -30.3 -0.7 14.1

100 -44.7 -15.2 -0.3

70 150 86.3 115.8 130.7

140 71.8 101.4 116.3

130 57.4 86.9 101.8

120 42.9 72.5 87.3

110 28.5 58.0 72.9

100 14.0 43.6 58.4

50 150 159.7 174.6 189.5

140 145.2 160.1 175.0

130 130.8 145.7 160.5

120 116.3 131.2 146.1

110 101.9 116.8 131.6

100 87.4 102.3 117.2

Ambient Temperature (F)System Temperatures (F)

BTUs (1000s)

Table 4.1 Predicted rates of energy 
capture for a 24 hour period from a 
single pair of bays at the UNH 
ASP/HRC facility (1000s of BTUs per 
day) as a function of temperature 
differential between vapor and water 
tank, and ambient temperature in the 
facilities operations room. 
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Another point derived from Figure 4.3a is that substantial amounts of heat energy can be 

generated over long composting cycles.  Note that the vapor temperature in this trial remained 

above 100oF even after nearly 6 months of decomposition.  While commercial composting 

operations tend to emphasize throughput rates, and so rarely hold material longer than 3-4 weeks, 

a system managed for maximum heat generation may be optimized with longer composting 

cycles. 

 

 

It is possible to run the model of heat generation and capture (Figure 4.1) for a very large number 

of combinations of changes in pile and water temperatures and aeration times over different 

lengths of composting cycles, the range of which is captured in Figure 4.3.  However, the major 

drivers of energy capture are presented in Table 4.1 and can be extrapolated directly to different 

management scenarios.  Enumerating all possible combinations in a large table might not 

enhance the clarity or value of the information provided.  For example, estimating actual heat 

capture using the data presented in Figure 4.3 would require specification of changes in the 

temperature of water in the storage tank as well, requiring in turn a description of the use of the 

capture heat. 

 

A final point is that these numbers are for a single pair of bays.  There are four pairs of bays in 

the facility, so potential energy capture estimated from the values in table 4.1 should be 

multiplied by 4 when assessing the capacity of the full system, assuming there is enough material 

to keep the facility operating throughout the year. 

 

Conclusions 

 

From the values in Table 4.1, and understanding that these numbers are for one set of bays out of 

four in the facility, it is clear that the range of predicted total energy capture from the UNH 

ASP/HRC system at full operation could range from essentially 0 (high tank temperature with 

Figure 4.3. Data for vapor temperature, airflow volume and aeration time for two 
composting trials. Volume is related to hours of aeration and average airflow rate during 
aeration, but was also measured directly. 
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low pile and ambient temperatures) to nearly 800,000 BTU per day (pile at 150oF, tank at 50oF, 

ambient at 80oF).   

 

The effectiveness of this type of system as a source of heat energy is then very clearly linked to 

management practices and the nature of the heat sink to which the captured energy is applied.  In 

Chapter 9 we will present several different methods of estimating total annual energy capture 

using a range of techniques and assumptions, and explore the potential for one particular 

application: using compost heat to extend the growing season in a high tunnel or greenhouse. 
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Chapter 5: Compost Gas Exhaust from an Aerated Static Pile Heat Recovery Composting 

System - Allison Leach, Nicole Williamson, Matthew Smith, and John Aber  

  

Introduction 

 

Chapter 4 presents the potential for generation and capture of heat energy from an Aerated Static 

Pile/Heat Recovery Composting (ASP/HRC) system.  The decomposition process also generates 

gases such as carbon dioxide (CO2), ammonia (NH3), methane (CH4), and nitrous oxide (N2O) 

[7, 34, 2, 101, 83] that can contribute to climate change or local air pollution [103, 99].  In 

particular, the carbon dioxide and ammonia concentrations in compost gas can be much higher 

than ambient levels. [7, 4, 68].   

 

The ratio of the two main carbon gases (carbon dioxide and methane) emitted during 

decomposition of farm wastes will vary depending on the concentration of oxygen in the pile [3, 

48, 97, see also Chapter 1].  This ratio will affect the impact of the process on the climate 

system, as methane is ~25 times more effective than carbon dioxide in retaining long-wave, 

infrared, or “heat” radiation [106].  

 

Most studies on compost gas exhaust concentrations cited above have occurred at the lab scale 

and have relied on expensive lab testing equipment.  Lab-scale results may not accurately reflect 

conditions in commercial-scale facilities. We could not find any studies in the literature 

exploring gas concentrations at ASP facilities with heat recovery.   

 

The goal of the research reported here was to develop a sampling procedure for measuring 

exhaust emissions from composting facilities using inexpensive and portable gas sampling 

technologies suitable for use in a commercial-scale facility, and to use these methods to 

characterize the concentrations of carbon dioxide, ammonia, methane and oxygen in the exhaust 

stream from the UNH ASP/HRC system. 

 

Methods 

 

We began this study by comparing available methods for measuring elevated concentrations of 

carbon dioxide, ammonia, methane and oxygen in the high temperature, high humidity 

environment of the vapor streams from the ASP/HRC facility.  As a result of these method tests 

[53], colorimetric gas detection tubes were selected as the preferred method, and were used to 

measure carbon dioxide and ammonia (RAE Systems, and Drager Systems).  Detection tubes 

were selected because of their wide concentration range (RAE Systems: 25-1000 ppm ammonia, 

Drager: 1000-5000 ppm ammonia, RAE Systems: 0.25-20% carbon dioxide) and accuracy at 

high temperature and humidity [77, 27]. Gas detection tubes are also relatively inexpensive and 

can be used by commercial compost facility operators. 

 

A gas detector (RKI Eagle Portable Gas Detector) was used for methane measurements because 

quantitative gas detection tubes for methane are not available.  Methane concentrations are 

measured on a scale of 0-100% of the lower explosive limit (LEL, or 0-5% by volume).  Oxygen 

measurements from the gas analyzer were used to monitor aeration before an oxygen sensor was 

installed in the facility.  Oxygen was measured in the gas detector using an electrochemical gas 
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sensor with a measurement range of 0-40%. The oxygen measurements from the gas detector 

were corrected using a comparison between the gas detector and facility sensor oxygen 

measurements [See 53], for additional details on sampling methodology). 

 

Gas sampling was conducted for four complete compost trials, each of which had two paired 

bays with the same feedstock material (Table 5.1). These individual bays are not true replicates 

because there is not a divider between bays.  Although the pipes drawing air through the two 

paired bays are 4 feet apart, aeration in one bay can also pull some air through the adjacent, 

paired bay. However for this study, each of the individual bays will be reported separately. 

 

Start date Bays 

Total 

number of 

days 

Days 

Sampled 

Number of 

sampling 

events 

 

Compost Trial 

Condition 

September 2015 1 & 2 83 4 days 32 Blocked air flow 

October 2015 3 & 4 53 6 days 23 Delayed microbial activity 

August 2016 3 & 4 61 22 days 39 Standard conditions 

November 2016 7 & 8 40 14 days 23 Low temperature 

As evident in the final column in Table 5.1, pile conditions varied widely across the four 

composting trials, with the August 2016 trial representing standard or ideal conditions, and the 

other three showing variations in composting rates and gas emissions.  Given this variation, we 

present here the August 2016 data set as most relevant to well-managed, professional operations. 

The results of the other three trials are presented in Leach [53].  

 

Results and Discussion 

 

Changes in pile temperature and gas concentration are presented in Figure 5.1.  On the first day 

of sampling, just after the feedstock was put in place, temperatures and ammonia concentrations 

are near minimums, while both carbon dioxide and methane are at their highest levels.  This 

suggests that the material was anaerobic prior to loading, due to outside storage.   After just one 

day of aeration, the ammonia concentrations quickly peaked to maximum readings: over 4000 

parts per million for bay 3 and near 2000 parts per million for bay 4. At the same time, carbon 

dioxide and methane concentrations both started to decline. Pile temperatures followed a similar 

pattern, peaking in the first week, and declining over time. 

 

Combining data from both bay 3 and bay 4 reveals a strong relationship between pile 

temperature and concentrations of carbon dioxide and ammonia (Figure 5.2).  Data from day 1 

and 2 of the trial are not presented as they represent initial pile conditions rather than the result of 

processes after loading.  This relationship is to be expected as higher temperatures reflect higher 

rates of microbial processing, which will also result in higher rates of release of carbon and 

nitrogen from the feedstock.  

 

 

 

Table 5.1. Descriptive information for four compost sampling periods. 
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Figure 5.2. Relationships between vapor temperature and concentrations of ammonia and 
carbon dioxide.  Outliers from day 1 and 2 of trial removed. 

Figure 5.1 Trends in vapor temperature 
and gas concentrations  over a full 
composting trial beginning in August 
2016 for two composting piles: Bay 3 
(Blue line) and Bay 4 (Red line).  
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In the introduction we highlighted the potential importance of the partitioning of carbon losses 

between carbon dioxide and methane.  By combining measured gaseous losses with estimates of 

initial pile content as well as measures of leaching losses that occur thought condensation that 

occurs as the vapor is cooled in the heat exchanger [53, 87], we can report the fractions of initial 

carbon and nitrogen lost and retained for the August 2016 trial (Figure 5.3). 

 

For carbon, losses were primarily through emission of carbon dioxide (22-25%), with 73-77% 

retained in the organic matter within the pile.  The remaining 1-2% was emitted as methane or 

leached in condensate (in Figure 5.3, black bars between retained and carbon dioxide).  For 

nitrogen, emissions of ammonia accounted for 6-12%, with 85-91% retained.   Losses in 

condensate accounted for about 3% of initial feedstock (black bars in Figure 5.3).  Greater 

emissions for carbon than for nitrogen are consistent with the expected decrease in the 

carbon:nitrogen ratio in the feedstock as decomposition proceeds. 

 

 

 

 

 

 

 

 

The ratio of carbon emitted as carbon dioxide versus carbon emitted at methane (~20:1) is much 

higher than ratios measured in static piles at the ODRF and agrees with undetectable levels of 

methane at the Diamond Hill Farm ASP/HRC facility (Figures 1.3, 1.4).  Similar differences in 

this ratio between aerated and static piles have been noted in the literature [3, 48, 97] 

   

Conclusions 

    

Two major conclusions can be drawn from this first set of measurement on gas emissions from a 

commercial-scale ASP/HRC facility.   

 

The first is that ammonia concentrations in exhaust gases are several orders of magnitude higher 

than atmospheric concentrations and can pose environmental challenges.  During full operation, 

ammonia odors were clearly detectable in the exhaust prior to the initiation of the biofilter work 

reported in the next chapter. 

 

The second is the potential for reducing the climate impacts of manure management on farms by 

replacing static non-aerated composting piles, which generate high methane emissions, with next 

generation composting systems that capture heat and reduce overall greenhouse gas emissions. 

Figure 5.3. Fate of initial 
carbon and nitrogen in 
feedstock for August 2016 trial.  
See text for explanation 

      Retained                      Retained 

 

 

 

 

 
Carbon Dioxide 

   Ammonia 

   Carbon                    Nitrogen 
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Chapter 6: Designing and Testing a Biofilter for Ammonia Removal at a Commercial-Scale 

Composting Facility – Nicole Williamson, Allison Leach, Matthew Smith, and John Aber 

       

Introduction 

 

Composting provides an environmentally friendly alternative to landfill disposal for processing 

organic waste material. Aerated static pile composting is a method of composting that pulls air 

through the compost to promote microbial activity, generating usable heat energy while also 

minimizing surface and groundwater contamination (see Chapters 1, 4 and 5).  While limiting 

some environmental impacts, this process still produces exhaust vapors with pollutants like 

ammonia that can impair local air quality [e.g. 74]. One response to the problem of ammonia 

emissions could be the installation of a biofilter.  Biofilters use biological process to remove 

unwanted elements from waste streams. 

 

For example, passing ammonia-rich gases, like those described in Chapter 5, through a carbon-

rich, microbially active substrate could reduce ammonia emissions from the facility through 

microbial immobilization of the ammonia resource [71, 65].  Materials frequently used for 

biofilter removal of ammonia include wood chips with or without finished compost added [see 

reviews by 119, 72, 15].  Such biofilters are cost efficient and easily installed.  

 

The use of biofilters is a well-established method for reducing emissions of odors and toxins 

from composting and wastewater treatment systems, having been employed as early as 1953 in a 

sewage treatment plant in Long Beach, CA [65].  Key characteristics of such systems include the 

type of material used in the filter, the structure, porosity, moisture content and temperature of the 

material pack, and the frequency and rate of aeration [82].  Mathsen [60] and Nanda et al [65] 

provide general reviews on each of these topics.  Mature compost, wood chips, straw, hay and 

similar materials are most commonly used in farm settings.  Unique combinations [e.g. 47] 

reflect local availabilities.  We focus here on the effects of biofilters on ammonia (NH3) as this is 

the primary constituent having a negative effect on odors and air quality. 

  

Janni et. Al [49] tested a portable effluent air characterization method at 6 different sites using a 

range of biofiltering approaches.  Inlet carbon dioxide (CO2) concentrations ranged from 618-

3085ppm, and ammonia (NH3) concentrations from 4.7-37.6ppm.  No changes in carbon dioxide 

concentration were measured, and ammonia removal efficiencies ranged from 60-90%.  Removal 

increased with moisture content in these systems, but so did nitrous oxide (N2O) production.  

Rate of airflow increased with measured pressure drop across the material.  Mathsen [60] 

emphasizes that slower air movement and lower pressure drops are important for maintaining 

relatively equal rates of airflow throughout the entire filter. 

      

Chen et al [13] report consistent ammonia removal rates of 95% over 210 days at inlet 

concentrations of up to 110ppm.  Lower efficiencies occurred above 110ppm, and after 200 days.  

Ling and Chen [56], as part of a larger study,  report 95% removal of ammonia by a 

compost/activated charcoal mixture with inlet concentrations from 20-500ppm and with retention 

times in the biofilter of about 30 seconds.  Pagans et al [71] found 95% removal using mature 

compost as the medium and inlet concentrations up to 2000ppm. 
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Nicolai et al [67] compared the retention efficiency for ammonia in biofilters using a mixture of 

compost and wood chips ranging from 10% to 90% and over three levels of moisture content.  

They found that efficiencies were relatively constant with compost content above 20% of the 

total, and moisture contents above 40%.  They recommended at 30:70 mix of compost:wood 

chips to optimize aeration, contact with biofilter material, and potential for biological activity. 

 

Most of the references cited above test biofilters in lab-scale settings with low concentrations and 

do not consider commercial-scale facilities and higher gas concentrations.  Here we address the 

construction, sampling methods, and ammonia removal efficiency of two different organic 

biofilters. The biofilters are located at the UNH ASP/HRC facility Organic Dairy Research Farm 

in Lee NH. 

 

Methods 

 

Ammonia removal efficiency of the biofilters tested as part of this study was determined by 

comparing the concentration of this gas in the exhaust stream from the ASP/HRC facility (see 

Chapter 5 for methods) against concentrations following passage through the biofilter.  To 

measure emissions from the biofilter, we needed to design and construct an enclosure that would 

isolate those emissions from ambient air.  To achieve this isolation, we used a system of pipes 

and valves to capture exhaust gases and direct them to the biofilter, placing biofilter materials 

over this piping system, and then building an enclosure over the biofilter to isolate emissions 

from ambient air (Figure 6.1). 

 

 

 

 

 

 

 

 

 

 

The pipe system for the biofilter was laid out as a pair of filter areas, each with a three pipe 

system for distributing exhaust from the composting facility to the biofilter (Figure 6.2).  Each 

leg of this system was 30 feet long.  Pipes were standard 8 inch diameter leach field pipes 

purchased from a local dealer.  This pipe system was laid on the ground and valves were 

included at each of the black square locations to direct airflow.  Biofilter material was laid over 

the pipes and mounded to a depth of approximately 3 feet.   

 

Figure 6.1 Conceptual diagram of the 
linked composting/biofilter system at 
the UNH ODRF 
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The frame for the enclosure constructed to isolate and measure gases passing through the filter 

material was constructed of PVC tubing in a peaked house design (Figure 6.2).  For sampling, 

this frame was overlain with plastic sheeting anchored to the ground with boards weighted down 

with sandbags and stones.  Sampling described below was designed to detect any dilution of 

gases that occurred during sampling periods by leakage around this cover. 

 

The initial concentration of ammonia and carbon dioxide within the enclosure would be the 

ambient concentration in the atmosphere.  As this initial air is displaced by flow-through from 

the exhaust stream and biofilter, the concentration within the enclosure approaches that of the 

gases leaving the biofilter material.  A set of methods experiments with gas sampling over time 

following placement of the enclosing plastic film demonstrated that, at normal fan speeds in the 

facility, concentrations within the enclosure reached an asymptote within 10 minutes.  For all 

results reported below, this 10 minute acclimation time was used. 

 

For all sampling trials, concentrations of ammonia and carbon dioxide were measured at the exit 

port of the composting facility, and within the enclosure, after acclimation.  As previous studies 

had suggested that concentrations of carbon dioxide did not change significantly by passage 

through a biofilter [e.g. 49], we used comparison of facility exhaust and enclosure concentrations 

of this gas as an indicator of leakage or dilution by ambient air from outside the enclosure. 

 

Gas concentrations were measured using the protocol and colorimetric gas detection tube 

methods described in Chapter 5. 

 
Results and Discussion 
 

Comparison of measured carbon dioxide concentrations in the facility exhaust and in the biofilter 

enclosure confirmed that those concentrations were similar, supporting the finding in previous 

papers that this gas did not change during passage through the filter.  This also supports the 

assumption that the gas concentrations within the enclosure were not affected by leakage or 

dilution by the ambient atmosphere. 

 

 

 

Figure 6.2 – Left, aerial schematic of 
layout of biofilter pipe system.  Above, 
design of PVC frame to hold plastic 
cover allowing enclosure of biofilter for 
gas sampling. 
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For all trials, the initial efficiency of ammonia removal was very high.  Over a standard 21 day 

composting cycle trial with a range of ammonia inlet concentrations, ammonia removal 

efficiency averaged  70-100% (Figure 6.3a).  Efficiency increased significantly with increasing 

inlet concentration across all trials and biofilter types (Figure 6.3b).  The efficiency of the wood 

chip only filter declined over the three year time period that it was in place, dropping to an 

average below 50% in year 3 (Figure 6.3c).  There were no significant differences between 

removal efficiencies for the wood chip only and wood chip plus compost filters. 

 

 

 

 

 

 

 

 

 

Figure 6.3 Results from biofilter 
trials.   
 

A) Inlet concentration (blue line) and 
removal efficiency (red line) varied 
over time in a 21 day trial.       
 

B) Removal efficiency across all trials 
increased significantly and non-
linearly with inlet concentration of 
ammonia. 
 

C) Efficiency of wood chip only 
biofilter declined over a 3-year 
period. 
 

A 

C 
B 
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Conclusions 

 

Our results substantiate that simple biofilters can generally be effective at removing 70-100% of 

ammonia from the exhaust gas stream of an ASP/HRC system like the one at the UNH ODRF.  

Efficiencies are a function of inlet concentrations, and decline with the age of the biofilter 

materials, dropping below 50% in the third year of operation.  There were no significant 

differences between wood chip biofilters with and without compost included. 
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Chapter 7: Waste Management Practices and Water Quality at the UNH Organic Dairy 

Research Farm – William H. McDowell, Michelle D. Shattuck, J. Matthew Davis and John 

Aber 

 
Introduction 

 

In addition to the air quality issues addressed in the last two chapters, agricultural practices are 

also known to affect water quality as part of what has been described as the Nitrogen Cascade 

[36].  In particular, accumulation of excess nitrogen in areas of concentrated animal agriculture, 

especially in barn and containment areas, or where animal manures are stored, can increase 

concentrations of ammonium and nitrate in water leaching through these wastes [e.g. 98].  One 

potential advantage of ASP/HRC systems in this regard is that manure/bedding wastes are stored 

under cover within the facility, protected from rain and snow.  In the case of the UNH Organic 

Dairy Research Farm (ODRF), other changes in waste management described below occurred at 

the same time as the establishment of organic dairy practices.  These changes provide the 

opportunity to examine the response of water quality across the farm. 

 

Two changes are highlighted here.  The first is a shift from the storage of barn wastes (manure 

and bedding) in an exposed, uncovered and anerobic site (Chapter 1), to the aerated and covered 

environment within the ASP/HRC structure (Chapter 3).  This change occurred when the facility 

was completed in 2013.  The second is the elimination of miniature swine from the animal 

husbandry operations at the ODRF in 2009.  The swine were raised in a single enclosed facility 

from which wet manure was washed daily into an open storage lagoon. 

 

At the beginning of the agroecosystem project, we proposed to measure and monitor nitrogen 

levels in groundwater at different locations across the Burley-Demeritt farm.  This work used 

groundwater wells that were installed in 2008 with support from the US EPA through 

the Connecticut River Airshed Watershed Consortium and the NH Water Resources Research 

Center.  With additional support from the SARE grant for our Agroecosystem Study, research 

has been completed describing ground and surface water flows [11, 37, 28, 63, 5].  Pairing this 

understanding with measurements over time of nitrogen concentrations in the groundwater wells 

and surface waters on the farm provides insight into changes in nitrogen dynamics related to 

changes in waste management practices during the first 10 years since the establishment of the 

Organic Dairy Research Farm.   

 

The purpose of this chapter is to present data on water flows and nitrogen concentrations across 

the ODRF and to highlight changes in water quality downflow from the outdoor manure storage 

and waste lagoon locations following the elimination of the miniature swine operation, and the 

relocation of the dairy waste storage to the composting facility.  We also present data from wells 

adjacent to the barn and yard area where temporary storage of manure/bedding materials before 

loading into the ASP/HRC facility has continued.  Farm operations are beginning to eliminate 

this intermediate, outside storage, moving wastes directly from the barn to the composting 

facility. 
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Methods 

 

Groundwater dynamics were determined using a 

combination of physical properties and hydrologic 

measurements [11, 12].  Satellite imagery (LIDAR – a 

laser-based reflectance technique) was used to map 

changes in elevation across the farm in high resolution 

(Figure 7.1).  Surficial geologic materials present at the 

farm were mapped and combined with coarse-scale 

USGS maps of soil type augmented with additional test 

bores across the farm to generate a soils data layer.   

 

Groundwater sampling wells were installed at different 

points across the farm.  Three were located just 

downflow from the swine waste lagoon, and two were 

located near the area where manure and bedding 

materials from the dairy operation were stockpiled 

outdoors before the construction of the covered 

ASP/HRC facility (see Chapter 1).  Additional 

groundwater wells were located along the elevational 

gradient evident in Figure 7.1 to produce the distribution of sampling sites shown in Figure 7.2, 

which also includes a surface water sampling station in Burley-Demeritt Creek (BDC in Figure 

7.2).   

 

Single well (slug) tests were 

conducted on a number of wells 

to estimate the hydraulic 

conductivity of the different 

geologic materials.  These data 

served as input to an industry-

standard groundwater hydrology 

model (MODFLOW) that was 

then used to predict rate and 

direction of groundwater flows 

across the farm [11]. 

 

Water samples were collected 

from this set of sites at roughly 

monthly intervals through 2014, 

and less frequently thereafter.  

Total dissolved nitrogen in 

samples was determined with a 

high temperature carbon 

analyzer with nitrogen module 

[62], nitrate was determined by ion chromatography [116] and ammonium was determined using 

the automated colorimetric method [107].   

Figure 7.2. Location of groundwater sampling wells with 
measured ranges of total dissolved nitrogen values. 

Figure 7.1. Elevational map of the 
ODRF with simulated side 
lighting to emphasize relief 
(Galvin 2010). 

                                          Swine waste storage lagoon 
                     Outdoor manure storage area 
 
 
 

 
                                                           
                                                      BDC 
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Results and Discussion 

 

Data derived from this set of studies have been used in several presentations on the impacts of 

agricultural watersheds on groundwater and streamwater quality [e.g. 21, 123].  Here we present 

only the subset of this rich dataset that relates to changes in water quality after ceasing to use the 

lagoon for swine barn wastes, and initiating operation of the composting facility and storing barn 

wastes mostly under cover. 

 

Figure 7.2 shows the location of the sampling locations, as well as mean concentrations of total 

dissolved nitrogen in the early years of the agroecosystem study.  The locations of both the swine 

waste lagoon and the manure stockpiling operation are shown.  The two red dots at the upper 

right are adjacent to the barn and pad area where cows are housed when not on pasture.  This 

area receives runoff and daily scrapings from the pad area.  Total nitrogen concentrations remain 

high in this area, although the form of nitrogen present has changed ( see Figure 7.5 below). 

 

The high level of nitrogen in groundwater 

adjacent to the lagoon and manure/bedding 

storage point sources is greatly reduced by 

the time the water reaches the creek draining 

the farm (BDC), and the adjacent Lamprey 

River (Figure 7.2).  Samples from the 

Lamprey taken above and below the farm 

show no evidence of an impact of the ODRF 

on river water quality [21].  Based on our 

chemical data and likely flow paths, it 

appears that passage of groundwater through 

both pastures and a naturally vegetated 

wetland prior to entering the creek may play 

an important role in minimizing the impact 

of this contaminated groundwater on total N 

export from the site.  Both biological 

processing (denitrification) and physical 

dilution may play a role here.  Results from 

the groundwater flow model suggest that 

dilution may be particularly important in 

driving nitrate concentrations (Figure 7.2 and 

7.3).  

 

The impact of alterations in waste generation 

and management practices is apparent in changes over time in nitrogen concentrations in samples 

from wells adjacent to the manure/bedding storage area and swine waste lagoon (Figure 7.4).  At 

both locations, reduction in nitrogen concentrations began immediately following the elimination 

of the waste source (2013 for bedding and manure, and 2009 for the swine operations). 

Figure 7.3 Modeled dilution of dissolved 
nitrogen concentrations measured at farm 
“hot spots” described in Figure 7.2 and 
accompanying text, by groundwater flow 
[12]. 
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While total nitrogen concentrations measured in the wells adjacent to the barn and pad remain 

high, the form of nitrogen present has shifted (Figure 7.5), with a marked decrease in nitrate, but 

a simultaneous increase in dissolved organic nitrogen (DON).    

 

 
 

Results also show that while nitrate levels are low on average in wells closest to the Lamprey 

River and in the creek draining from the farm to the river (Figure 7.2), concentrations in the 

creek are influenced by flow rate (Figure 7.6), with highest concentrations seen during periods of 

low flow. 

 

 

 

 

 

 

 

 

Figure 7.5. Measured 
changes in nitrate and 
dissolved organic 
nitrogen in wells 
adjacent to the barn and 
pad at the ODRF [61].   

Figure 7.6. Nitrate concentrations 
in the Burley-Demeritt Creek 
(BDC) draining the ODRF as a 
function of season and runoff 
(flow normalized by area, 
reprinted from [50]).  

Figure 7.4. Measured 
changes in total 
dissolved nitrogen 
concentrations in 
groundwater 
adjacent to two 
animal waste storage 
location following 
removal of those 
waste streams.  See 
text for explanation 
[61]. 
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Conclusions 

 

This partial presentation of results from extensive studies measuring and modeling ground and 

surface water dynamics and nitrogen concentrations demonstrates the additional benefit of a 

covered composting system, such as the ASP/HRC system at the UNH Organic Dairy Research 

Farm, in reducing nitrogen runoff into groundwater.  The data also suggest that high 

concentrations of nitrogen generated by high density stock or waste areas can be diluted or 

processed in soils, wetlands and streams in adjacent, low-density areas such as those that occur 

in pasture-based systems with unmanaged land use buffers. 
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Chapter 8: Nitrogen Cycling, Surplus and Use Efficiency at the Organic Dairy Research 

Farm - Impacts of Composting - Allison Leach and John Aber  

 

Introduction 

 

Agricultural production is a major component of human impacts on the cycling of nitrogen at 

local to global scales, and reactive forms of nitrogen created through the production of fertilizers 

or combustion of fossil fuels can have “cascading” effects [36], affecting environmental quality 

during passage from atmosphere through soils to surface and ground waters.  At the farm level, 

management of agricultural wastes, and especially animal manures, are a major factor in a farm’s 

overall environmental impact [e.g. 39]. 

 

Our work at the UNH ODRF suggests that conventional approaches to manure management 

using static piles stored outside can enhance nitrogen leaching to groundwater as well as 

increased emissions of methane to the atmosphere (Chapters 1, 5 and 7).  Composting, especially 

using the aerated static pile (ASP) method presented in Chapters 3-6, offers the potential to 

reduce both pollution vectors.  Many of these improvements are related to housing the 

decomposing feedstock under cover in a building and controlling the decomposition process 

through continuous aeration. 

 

An additional aspect of the long-term consequences of composting in terms of reducing nitrogen 

(N) pollution might best be assessed using a farm N budget and a range of compost export 

scenarios [118, 69, 10, 44, 25].  Specifically, exporting compost as an additional saleable product 

could remove excess nitrogen introduced in feeds, reducing the potential for emissions of waste 

N to waters or the atmosphere.  In this chapter we present data on the nitrogen budget of the 

UNH ODRF and explore the impact of retaining or exporting produced compost on farm 

operations in terms of net nitrogen surplus (excess of external inputs over export in product) and 

nitrogen use efficiency (the percentage of nitrogen inputs exported in products).  

 

Farm nitrogen budgets and performance indicators 

 

A complete farm N budget includes all transfers of nitrogen across the farm boundaries (inputs 

and outputs), as well as transfers among major parts of a farm (e.g. Figure 8.2).  Farm N inputs 

can include fertilizer, feed, livestock, bedding, and biological nitrogen fixation (BNF) by 

legumes like clover in pastures. The farm N outputs are the farm products such as milk and sold 

cattle.  In this chapter we also consider the impact of including the sale of compost as an 

additional product. Other N loss pathways, including leaching to surface or subsurface water or 

emissions to the atmosphere, can also be measured or estimated.  The farm N budget approach 

has been used extensively in the technical literature to compare productivity and efficiency of 

different operations [118, 69, 55 22, 23, 25].  Two performance indicators are used most 

frequently: Nitrogen surplus and nitrogen use efficiency.   

 

Nitrogen surplus is just the difference between N inputs and outputs, or the amount of nitrogen 

crossing the physical farm boundaries (Figure 8.2, 8.3).  By convention, the amount of nitrogen 

added to a pasture-based dairy system through biological nitrogen fixation, primarily by legumes 

such as clover or alfalfa, is also included as an input.  The fate of the N surplus is not always 
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clear depending on the level of detail in the budget calculations. Potential fates for the N surplus 

include storage on the property (with soil storage being the most likely reservoir in pasture 

systems) or loss to the environment (leaching to water or emissions to the atmosphere).  

 

Nitrogen Use Efficiency (we will use NUE for this) is the percent of N invested into farm 

production (inputs) that makes it into the intended products (e.g., crops, milk, animals sold, and 

in this case, compost).   

 

Methods 

 

The ODRF averages about 80-100 head of registered Jersey cows (Figure 8.1) including 40-50 

milkers and the rest heifers, dry cows and calves.  The farm property spans about 300 acres, 

including about 170 acres in woodlands and 110 acres in pastures and forage production (see 

description in Chapter 2).  The farm is a USDA certified organic dairy operation.  Lactating cows 

are on pasture from early May to early November, following USDA organic guidelines.  

Milkers’ diet is augmented with a mixture of imported organic feed grains plus forage and 

baleage, most of which is produced on-site.  The farm property has an open bedded pack barn for 

the cattle, storage barns, a step-up milking parlor, and the composting facility described in earlier 

chapters.  

 

 

Agricultural wastes generated at the ODRF are processed at the Joshua Nelson Energy Recovery 

Compost Facility (Chapter 3) and later applied to the pastures.  Feedstock materials for 

composting include cow manure, bedded pack, waste baleage, and wood chips.  Vapor drawn 

down through the composting materials and into the heat exchanger is at 100% relative humidity 

and is greatly enriched in carbon dioxide and ammonia (Chapter 5).  After passing through the 

heat exchanger, this vapor stream is routed through a biofilter (Chapter 6).  Condensation occurs 

as the vapor cools in the heat exchanger and the resulting liquid condensate is collected in a 

storage tank.  Both the exhaust gases (Chapter 5) and the collected leachate are measurable parts 

of the nitrogen budget for the farm and are included in this analysis. 

 

Farm nitrogen budget    

 

The ODRF nitrogen budget captures major flows into and out of the farm property as well as 

transfers between the three major components: Pasture, Animals and Barn, and the Composting 

Facility  (Figure 8.2).  Sources for the data used to develop the numbers in this figure are 

summarized in Table 8.1, and details on sources, methods and calculations can be found in [53]. 

 

Figure 8.1 Jerseys 
grazing at the 
University of New 
Hampshire Burley-
Demeritt Organic 
Dairy Research Farm  
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Because a number of the largest nitrogen flows involve financial transfers as well, detailed 

information is available from the financial offices at UNH that oversee the farm.  These include 

the purchase of grains, baleage and bedding, and the sale of milk and animals.  Other minor 

inputs include atmospheric deposition and a small input from wood ash added as fertilizer to the 

pastures.   

 

The largest input not measured directly is biological nitrogen fixation (BNF) by legumes in the 

pastures.  This was estimated using a survey of pasture vegetation [40] to determine the 

percentage of alfalfa and clover in the pastures matched with average rates of nitrogen fixation 

by those types of vegetation drawn from the literature (see [53] for sources and methods). 

 

Internal transfers include estimates for forage consumption on pasture as well as manure returned 

directly to pasture during grazing (based on number of animals, time spent on pasture, and 

average consumption rates from the literature and from feed records kept at the ODRF as part of 

the organic certification process), and measured harvest of baleage for later consumption. 

 

Figure 8.2  Nitrogen budget for the UNH Organic Dairy Research Farm (pounds nitrogen 
per year).  Figures in black are from direct measures or data available from purchase and 
sale information.  Values in red are calculated based on assumptions described in the text. 
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The remaining major transfers involve the management and processing of the composting 

feedstock and system.  During the years of SARE support, the composting operation was 

managed for research.  This meant that the timing and amount of material actually processed 

varied from year to year, and did not always include all materials produced in the barns.  For 

some trials, material was imported from the equine operations on the main campus in Durham.  

To better represent commercial operational conditions, we assume here that all of the 

manure/bedding mixture generated in the barn, and only that material, is transferred to the 

composting facility. 

 

 

Data source Farm nitrogen budget data sets 

Farm Operational and 

Financial Records: 

 

• Annual milk production and quality 

• Livestock counts, types, and ages 

• Feed grain purchases 

• Baleage (on-site production and purchased) 

• Pasture grazed by cattle 

• Purchased and sold livestock 

• Bedding (purchased) 

• Manure production and management 

• Compost feedstock 

Other SARE-Related Research: 

 
• Compost exhaust gas emissions  

• Leachate/condensate e 

• Compost production e 

• Pasture vegetation survey/Literature fixation rates 

• Groundwater and stream water nitrogen 

concentrations d 

Data Shared From Other 

Projects at UNH: • Atmospheric deposition (Shattuck, Pers. Comm.) 

 

The amount of compost feedstock generated then is best estimated by using well-measured 

inputs and outputs from the pasture system plus purchased grain, baleage and bedding fed to 

stock while in the barn.  The first step is calculating the balance over the pasture.  Including all 

of the inputs and outputs from pastures (excluding return of compost for now), there is a net 

transfer of 10,340 pounds per year to the stock and the barn.  Adding to this the inputs of grains, 

purchased baleage and bedding, and understanding that the total amount of nitrogen in cows, 

heifers and calves will not change significantly year to year “Net: (0)”, estimated transfer of 

nitrogen to the composting facility is 16,650 pounds N per year (Figure 8.2).  This is consistent 

with the numbers on total weight of feedstock used in Chapter 9 to estimate total potential heat 

production and potential application to greenhouse warming. 

 

Table 8.1 Data sources for the farm nitrogen budget at the UNH Organic Dairy Research 

Farm. 



50 
 

Similarly, the net change in total nitrogen content in the composting facility will not change 

significantly year to year, relative to the amount of material being processed (again Net: (0)).  In 

Chapter 5, the measured partitioning of nitrogen accompanying a 30% loss of mass over 21 days 

of decomposition was 87% retained in the compost product, 10% lost as ammonia gas, and 3% 

captured in leachate (Figure 5.3).  Using these numbers, and assuming that all of the compost 

and leachate are returned to the pastures, there is an additional 14,990 pounds of nitrogen per 

year added to the fields.  This results in a total excess nitrogen addition to pastures of 7,630 

pounds N per year (Figure 8.2).  The fate of this added nitrogen is discussed below. 

 

Farm nitrogen performance indicators 

 

The farm N budget results were used to calculate two N performance indicators (Figure 8.3) - N 

surplus and nitrogen use efficiency (or NUE) - for three different compost management options: 

returning all compost to pastures, or selling 25% or 50% of produced compost to off-farm buyers 

(Figure 8.3).  N surplus was also calculated per unit area of pasture (110 acres). 

 

 

 

 

Figure 8.3  Nitrogen performance values for the UNH Organic Dairy Research Farm 
(pounds nitrogen per year).  See text for sources and explanation. 
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Nitrogen surplus is simply the amount of nitrogen imported on to the farm in grains, baleage, 

bedding, plus inputs from the atmosphere through deposition and nitrogen fixation by legumes in 

the pastures, minus exports in products.  For the first set of calculations, exports are limited to 

milk and animals.  For the second and third, additional export is calculated to include 25% or 

50% of the compost produced on the farm.  As shown in Figure 8.3, the surplus retained on site 

is much higher without the sale of compost (8,130 pounds N), and is reduced through the sale of 

25% of compost (4508 pounds N) or 50% (885 pounds N).  As this calculated surplus is assumed 

to accumulate on pastures by addition of non-sale compost to fields, surpluses are also calculated 

per acre of pasture (Figure 8.3). 

 

Nitrogen use efficiency (NUE) is similarly affected by the sale of compost.  Calculated assuming 

retention of all compost on site, the NUE is 28% meaning that only 28% of nitrogen entering the 

farm, with grains and baleage the primary purchased inputs, exits in milk and animals.  Adding a 

50% export of compost increases the total nitrogen in product from 3,830 to 11,095 pounds of 

nitrogen per year, and increases NUE from 28% to 81%.  With the sale of 25% of produced 

compost, NUE is 55%. 

 

What do these numbers mean for farm management, and how do they compare with other 

dairies?  Answering the second question first, several recent papers in the scientific literature 

have done these calculations for a large number of farms, mainly in the U.S. Europe, New 

Zealand and Australia (Figure 8.4, see [53] for sources).  Expressed as amount of nitrogen per 

unit area, the ODRF is among the lowest in terms of nitrogen inputs because it is pasture based, 

and so much of the nitrogen cycling through the milk production system is recycled through the 

pastures either by direct deposition of manure, or the return of compost to the fields.  Those 

dairies with very high rates of N inputs and outputs per unit area would be increasingly confined 

systems with high inputs of grains and crops grown off-site. 

Figure 8.4 Nitrogen performance calculations for the UNH Organic Dairy Research Farm 
in comparison with data from other dairies [25].  Ranges for both Nitrogen Use Efficiency 
(NUE) and Nitrogen Surplus are shown.  See text for explanations. 
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Values for NUE fall within a fairly narrow range for all dairies (mostly from 20-40%, Figure 

8.4).  This is due to the inherent biological limitations of conversion of grains, baleage and 

pasture fodder to milk, and because milk and animals are the primary products in all cases shown 

on the graph.  At 28% for the milk-only calculation, the ODRF is within this range, but a little 

below the average of 32%.  The very high NUE when compost is included as an additional 

product results directly from offsetting the high inputs in grains and nitrogen fixation through an 

additional export of product.  Other farms could achieve similar results if their waste 

management systems were solid manure systems with efficient composting, and a significant 

fraction of produced compost was sold. 

 

In contrast to NUE, the calculated range for nitrogen surplus, expressed per unit area, increases 

with the intensity of inputs (Figure 8.4).  The ODRF is lower in terms of surplus (66% below the 

average), again because of the extensive rather than intensive use of land area in pasture-based 

systems.  Including 50% of compost as an additional product, the nitrogen surplus at the ODRF 

(8 pounds per acre) would be among the lowest in this data set, and total product export would 

exceed a target value set in the source publication (72 pounds per acre per year).  With a 25% 

export of compost, the N surplus would be 41 pounds per acre). 

 

What do these numbers mean for farm management, in terms of both economic and 

environmental sustainability?  Are there upper or lower limits to NUE and N surplus that would 

be in keeping with good management practices? 

 

As a first approximation, higher NUE and lower surplus would appear to be both economically 

and environmentally favorable.  Nitrogen inputs in terms of grain purchases or fertilizer 

amendments to fields (if any) cost money, so making the most effective use of those inputs 

should increase financial returns (we realize that this is an extremely oversimplified view of the 

complex topic of cow nutrition and milk production!).  Reducing the nitrogen surplus should also 

reduce the chance for increased nitrate concentrations in surface and ground water.   

 

Two major uncertainties in the budget presented in Figure 8.2 might urge caution in these 

judgements.   

 

The largest unknown is biological nitrogen fixation (BNF).  While this process is very well 

documented and understood physiologically, the actual rate of fixation has been shown to be 

highly variable, and dependent on rates of either fertilizer N addition or natural release of 

nitrogen through the decomposition of soil organic matter (54, 102).   

 

The second important uncertainty is the fate of nitrogen added to pasture soils through BNF, 

direct manure deposition, or by returning compost to the fields.  Figure 8.2 suggests a very large 

return of N to the fields if compost is not sold.  This is the other side of reduced NUE and an 

increased N surplus.  If the numbers in Figure 8.2 are accurate, then a question is: how much of 

this added N can be stored in the soil and for how long, and how much might be leached to 

groundwater or lost to the atmosphere through denitrification?  These last two processes can 

have very different environmental outcomes.  Nitrogen leached to groundwater can impair water 

quality.  If most of the denitrified N is converted to unreactive nitrogen gas (N2) and emitted to 
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the atmosphere it will have no impact (See [36 and 53] for a more complete discussion of the 

fates and impacts of other gaseous forms of nitrogen in general and at the ODRF). 

 

Groundwater well data (Chapter 7) show that past practices have resulted in nitrogen “hot spots” 

on the farm, but also suggest that these excesses are either diluted effectively, or subjected to 

denitrification, such that impacts off-farm are minimal.  To the extent that this is the case, the 

extensive application of excess nitrogen in the form of compost over the relatively large area of 

the farm would not appear to present serious environmental problems. 

 

If actual rates of nitrogen fixation are lower than shown in Figure 8.2, and/or if soil retention of 

nitrogen added in manures and compost is lower as well, it is conceivable that aggressive sale of 

compost off-site could result in the “mining” of the nitrogen capital in pasture soils, reducing 

future nitrogen availability and forage and baleage production.  Unfortunately, measuring 

accurately either soil nitrogen content or rates of release through decomposition are among the 

most expensive of soil assessments, requiring large numbers of samples due to natural 

variability.  These uncertainties might argue for a conservative approach to selling compost as an 

additional product from the ODRF.   

 

On the other hand, the revenue to be realized from the sale of compost can be an important offset 

to the cost of grains.  In the first application of an ASP/HRC system at Diamond Hill Farm in 

Vermont (a heifer operation, not a dairy), sale of compost added significantly to farm revenues 

(104).  As seen both at Diamond Hill, and in the information presented in Chapters 3, 4 and 9, 

cost reduction in farm operations by capturing heat from the ASP/HRC system could also 

improve the farm’s bottom line. 

   

Conclusions 

 

As a pasture-based system, the UNH ODRF has a comparable-to-low whole farm nitrogen use 

efficiency (NUE - 28%) compared to other dairy farms (32% average), but N surplus per unit 

area is also much lower – about 66% less than the average (Figures 8.3 and 8.4).  This means that 

any N losses are spread over a much larger land area and are less likely to contribute to negative 

environmental impacts.  NUE could be increased and N surplus could be reduced significantly 

by selling compost off-site as an additional product of the farm, but uncertainties in the N budget 

calculations, especially for biological nitrogen fixation, and the fate of compost added to fields, 

suggests caution to avoid mining of soil N.  The compost produced could be more valuable as a 

soil amendment to increase pasture productivity, than as a saleable product 
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Chapter 9: Putting Compost Energy to Work for Sustainable Agriculture: The University 

of New Hampshire as a Case Study – John Aber, Dena Hoffman and Matthew Smith     

 

Introduction 

The New England Food Renaissance is a term that has been used to describe the rapid changes in 

consumer preferences and food production systems happening in the region.  Farm to table 

restaurants and farmers’ markets have proliferated, and the availability of locally sourced and 

organic products has increased in mainstream supermarkets as well [19].  Most New England 

states are highly ranked on a national “Locavore” index [100, 32], and the region hosts the 

highest density of farmers markets in the country [73]. 

One manifestation of this change is captured in the New England Food Vision, which has 

proposed a goal (named 50 by 60) of producing 50% of the region’s food requirements within 

the region by the year 2060 [33]. The 50 by 60 goal promotes sustainable agriculture and fishing 

as well as healthy food for all of New England.  Achieving this goal with existing farm practices 

would require a tripling in the amount of agricultural acreage.  

The New England food renaissance has also led to more interest among college-age students in 

agriculture education, especially at the Land Grant Universities in the region [64], and an 

increase in the number of farms, especially new, small, specialty producers [33, 115].  In a 

region rich in non-profit organizations and state agencies reflecting cultural values and high 

expectations for landscape preservation and environmental quality, minimizing the 

environmental footprint of the food production system is a parallel requirement.   

Given this cultural and economic context, a focus on sustainable agricultural practices with an 

emphasis on local production would seem to be an essential part of fulfilling the Land Grant 

mission for public research institutions in New England. 

Short growing seasons are a major challenge for increasing food production in New England, 

and this has led to increased interest in the use of high tunnels and greenhouses to extend seasons 

and control growing conditions. While greenhouses tend to be glass-enclosed structures with 

permanent frames, high tunnels are often simple plastic covers over a temporary or moveable 

frame.  All possible combinations and variations of these kinds of structures can be built [114].  

Major private and public investments in these types of structures, which can be especially viable 

for organic produce production [e.g. 41], are occurring across the region [e.g. 16]. 

With additional heating, greenhouse production can be maintained year-round, particularly for 

cool season crops not requiring high light levels. In the long winters in New England, meeting 

the energy requirement for heat can be expensive, often making a 12-month season cost-

prohibitive.  Matching ASP/HRC systems with adjacent high tunnels or greenhouses offers the 

potential to reduce heating costs.  It may also be possible to access some of the carbon dioxide 

produced by the composting process to fertilize plant growth. 

Using compost as a source of energy and carbon dioxide for greenhouse operations is not a new 

idea.  In the northeastern U.S., two organizations have done the most to advance and promote 
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this concept, and the information generated by these two is captured in two publications that are 

now widely available. 

  

Beginning in the 1970s, New Alchemy Institute on Cape Cod, Massachusetts, developed a 

prototype of a self-contained system for growing food and recycling wastes (the “Ark”).  One 

component of that system was a compost/greenhouse combination.  Work in the Ark has 

provided a basis for continuing efforts to link composting with food production.  Much of the 

information generated by this work is captured in Fulford [35].  That report covers both heat and 

carbon dioxide generation in a greenhouse with an embedded compost pile, as well as 

information on biofilters to remove ammonia, and tests of crop production.  While our system 

differs in that the composting facility is adjacent to, rather than embedded within the greenhouse, 

the concept of using compost to heat a greenhouse is the same. 

  

More recently, Brown [9] provides a full review of different approaches to energy capture from 

composting, and the application of compost outputs to greenhouse production.  Topics include 

the isobar system used in the UNH composting system [90], as well as smaller-scale Jean Pain 

systems.  Information on greenhouse design and compost feedstocks is also included.  This 

source contains information on the small number of very recent efforts to integrate composting 

and greenhouse production.  This publication is one output of the work at the Highfields Center 

for Composting. 

  

Interestingly, the concept of compost-powered greenhouses appears rarely in the academic 

literature.  A thorough review of heat capture by Smith et al [94], noted two references, from 

1977 and 1995, that report results for compost heated greenhouses.  In contrast, several popular 

websites now touch on the topic of compost and greenhouses, most of which link back to either 

the New Alchemy or Highfields work.  A quick web search returns many links to companies and 

products that relate to small-scale composting paired with greenhouses, and the presence of at 

least one informal network of practitioners [19]. 

Can farmers in the northeast extend their season of production, and reduce both the cost and 

carbon footprint of heating these structures by combining ASP/HRC composting with 

greenhouse production?  Again, given the trajectory of agriculture in New England, answering 

this question would seem to be an essential part of the Land Grant mission. 

The University of New Hampshire Case Study 

The University of New Hampshire is a recognized leader in the development and application of 

sustainable practices [113].  Over the last decade, it has also invested in and expanded both 

teaching and research in sustainable agriculture [111].  One important component of that 

research is directed at increasing the value and productivity of high tunnel greenhouses through 

crop selection, management techniques, breeding programs, and extension of the growing season 

[e.g. 110].  Research efforts have focused on cool season greens, fruits and berries, and even 

crops fairly exotic for the region, like kiwis.  Harvested crops, including Brussel sprouts, 

tomatoes, eggplants, green peppers, okra, radishes, beets, and lettuce are used in the UNH dining 

halls or at the on-campus restaurant, the UNH Dairy Bar.  
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UNH has supported a conventional composting program for more than 30 years.  Currently, food 

wastes from the dining halls are combined with barn wastes from the on-campus equine program 

to generate nearly 1,000 tons of compostable material per year.  The conventional method used 

for composting this material includes the use of windrow piles in which materials are turned 

roughly once a week for the first month, and then left to cure for the next year, with occasional 

turning thereafter. Windrow composting operations are still the most common commercial 

operation in the US.  If they are a registered operation that export material off-site, then they also 

have to comply with the requirements that the pile achieve at least 130oF for at least 15 days with 

5 turns of the pile over that period of time [9].  While materials managed in this way generate 

heat sufficient for producing optimal compost, options for heat capture are limited [95]. 

UNH and the Town of Durham in which it resides cooperate in providing many basic services, 

including water supply, waste water management and fire and rescue, among others.  In keeping 

with its own culture and goals for environmental quality, Durham is considering adding 

composting of organic wastes, an increasing choice around the region, and standard practice 

throughout much of Europe.  In this analysis, we estimate the impact of a joint town/UNH 

composting operation. 

The potential seems to exist to reduce both the operating costs of the UNH composting program, 

and the cost of heating the set of high tunnel greenhouses if it is possible to link an ASP/HRC 

system to at least some of the high tunnels on campus.  Such a step should also enhance the 

overall sustainability of operations on campus, and help maintain UNH’s standing as a leader in 

this field. 

The goal of the analysis reported here is to test the feasibility of a composting/greenhouse 

linkage using real information from UNH.  The analysis involved four steps.   

1) Estimate the quantity of compostable material that could serve as feedstock for an ASP/HRC 

system located on the UNH campus.  This could include on-campus material, as well as barn 

wastes from the Organic Dairy Research Farm 7 miles from campus, and possibly organic wastes 

generated by the Town of Durham.   

2) Estimate the amount of heat energy that could be derived from this material using a variety of 

approaches drawn from the literature, and based on results from the UNH ASP/HRC system.  

This includes values for systems with and without a heat storage water tank. 

3) Access data from the UNH Energy Office to estimate the amount of heat energy required by 

high tunnel and research greenhouses on campus, and match that with results from step 2 to 

assess the potential value of compost heat in both extending the growing season in on-campus 

greenhouses and reducing heat energy costs. 

4) Generalize these results and provide a framework for analysis by practitioners, by combining 

the calculations from step 2 with a simple model of energy balances for a greenhouse paired with 

and ASP/HRC system. 
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Methods 

     1. Data on Sources of Compostable Material and Current Management Practices 

Data on compostable materials are available from the UNH equine facility, the Organic Dairy 

Research Farm, and UNH Dining operations, as well as a potential source of organic materials 

from the Town of Durham (Table 9.1).  

 

 

 

 

 

 

 

The equine facility at UNH cares for a number of horses housed in stalls with bedding materials 

such as hay and wood shavings, and generates a substantial amount of manure/bedding material 

(Brenda Hess-McAskill, personal communication).  Numerous composting trials at the UNH 

ASP/HRC facility using equine bedding materials generated higher pile temperatures than trials 

with material from the ODRF barn alone (Matt Smith, personal communication). 

UNH dining operates dining halls that, despite programs to reduce this stream, produce large 

amounts of food waste.  An estimate for food wastes created at the three largest dining halls 

(Holloway, Philbrook and Stillings) is 270 tons per year, with maximum amounts produced 

during spring and fall semesters, and lesser amounts during January term and summer.  Food 

wastes are sent through an industrial grinder, which reduces particle size and also moisture 

content. This material is then transported by truck about once per week to Kingman Farm. 

Food wastes are combined with manure/bedding from the equine facility and composted using a 

conventional turned-pile process.  Kingman Farm personnel create and maintain windrow piles 

approximately 10 ft wide, 4.5 ft high, and 200 - 300 ft long using an industrial-scale compost 

turner.  Each windrow is turned every 2 to 3 weeks during the active composting phase, and less 

frequently during the curing stage. After one to two years the finished compost is spread on 

UNH fields.   

The UNH ASP/HRC system is located at the Organic Dairy Research Farm (ODRF), part of the 

Burley-Demeritt Farm in Lee, NH. The ODRF houses an average of 40-50 milking cows at any 

one time, and a total of about 100 animals, including calves, heifers and dry cows. The bedded 

pack barn at this facility generates about 68 tons of waste per month, or a total of  816 tons per 

calendar year.  Totals are higher during the winter, and lower in the summer when cows spend 

most of their time on pasture. 

Table 9.1 Compostable material available (wet tons). Sources: UNH 

Dining and Equine Programs, Durham Solid Waste Committee. 

     

        Source  per month # of months Total 

 Food waste        30            9 270  

 Equine 2        60           12 720 

       On campus total        990 
 

ODRF         68           12 816 

       UNH Total      1806 

 Durham        30           12           360 

       Community Total      2166 
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One possible additional source of material for composting on campus could be the town of 

Durham, which is considering the separation of compostable organic materials from the general 

refuse collection system. According to town sources, as much as 25% of the Town’s current 

waste stream could be compostable, for an estimate of 360 tons per calendar year. 

     2. Estimating Total Potential Energy Generation from Compost 

ASP/HRC systems are a relatively new technology and there are few studies that report heat 

generation capacity for commercial scale operations.  In addition, the few papers available that 

present data on heat recovery from compost [95] often report rates per hour under ideal 

conditions, or do not include data on the amount of material composted, or the duration and 

timing of aeration.  This makes it difficult to extrapolate from those studies to an annual potential 

energy yield from a given amount of compostable material.  The most frequently cited number is 

1.4 MMBTU (million BTU) of heat energy generated per ton of material [18, 19].  This number 

is for energy released, not necessarily energy captured and used. 

Here we pursue three different methods for estimating not only the amount of heat energy that 

can be generated, but the fraction of that energy that can be captured and put to use.  For each 

method, we assume an annual throughput at the ASP/HRC facility of 1 new load (one of 4 pairs 

of bays filled) each month.  An average load is ~68 tons wet weight, giving an annual total of 

816 tons of material, wet weight.  Average holding time for each load would be 1 month.  

Observations at this facility suggest that composting will reduce total material weight by 20% to 

40%.  In Chapter 5 (Figure 5.3) we show that a 22 days composting cycle resulted in about a 

25% loss of carbon.  We assume here that a 1 month cycle will result in a 35% loss of both total 

carbon and total weight. 

One approach to estimating total potential heat generation and capture is to begin with the total 

energy content of compostable material, and multiply that by the fraction of that material 

generally decomposed in the composting process.  Matt Smith (unpublished) used bomb 

calorimetry and measured the energy content of material generated at the ODRF as equivalent to 

14.4 MMBTU/ton of oven dry material.  Assuming a 50% water content in that material yields 

7.2 MMBTU/ton of wet material.   The lower estimate of 20% weight loss would yield 1.4 

MMBTU/ton, equivalent to that most frequently cited value above.  At 35% weight loss, the total 

energy released would be 2.45 MMBTU/ton.  At 816 tons total per year, this means an energy 

release of  ~ 2,000 MMBTU per year, or ~ 5.5 MMBTU per day. 

A second approach is to work up from the measured rates of energy capture at the UNH 

ASP/HRC.  In Chapter 4 we report maximum energy capture rates ~200,000 BTU per day for 

one pair of bays.  With 4 sets of bays in the facility, maximum energy capture could reach 

~800,000 BTU/day at full capacity.  This translates to 292 MMBTU per year. 

A third approach is essentially a computational check on the second.  Based on the model 

discussed in Chapter 4, which takes basic measurements from the ASP/HRC facility used above 

and combines them with the same assumptions about pile temperature and aeration time used for 

the first two methods, energy capture can approach 200,000 BTU/day under ideal conditions 

(Table 4.1).  With 4 sets of bays, a daily total of ~800,000 BTU/day or about 292 MMBTU per 

year, is possible. 
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These values represent a relatively small faction of the estimated total energy release of ~5.5 

MMBTU/day (see Table 9.2 below).  Why would this value be so low?  We have noted two 

possible reasons for this.  The first is that a system using a heat storage tank is inefficient as the 

heat recovery rate decreases as the difference in heat source and sink approaches zero.  Even at 

relatively low tank water temperatures, exhaust gases from the facility are often elevated relative 

to ambient conditions (Figure 4.1).  A second possible reason would be insufficient insulation 

around the bulk storage tank itself, which loses energy especially during the cold winter months 

(Table 4.1).   

It is possible to eliminate both of these issues through direct piping of compost vapor to the 

attached structure, and using standard heat exchange pipes or radiators to capture the heat of 

condensation as the vapor cools to greenhouse temperature (as the vapor can be corrosive, 

stainless steel materials might be required).  How might this work in the UNH case, and how 

much might this approach increase total energy capture? 

The method for estimating potential heat capture by this process is very different.  We assume 

that vapor from the compost facility is piped directly to the greenhouse and then through 

standard baseboard heat types of piping within the structure, with enough length of pipe in the 

greenhouse to reduce the temperature of the vapor to that of the target temperature in the 

structure.  As the temperature drops, vapor will condense within the pipes, releasing energy to 

the structure.  The calculations that follow assume that all of that condensation occurs within the 

heating pipes within the greenhouse.    

This calculation requires that, in addition to vapor temperature, the total volume of vapor passing 

through the condensation system be known.  Data on rate of air movement through the UNH 

ASP/HRC system (cubic feet per minute) was recorded continuously as part of the data 

acquisition system.  Knowing the volume of vapor moving through the pipes per unit time as 

well as the temperature, and assuming 100% relative humidity (saturation) in the vapor stream, 

the total weight of water in the vapor stream can be calculated using a standard relationship 

between temperature and total amount vapor content at saturation [17, 29].  As the temperature 

drops to the target temperature in the greenhouse, the vapor remains at saturation, and moisture 

condenses in the pipes.  The total amount of condensation in the pipes can be calculated as the 

difference between saturated moisture content at the vapor and greenhouse temperatures.  Then 

the amount of energy released can be calculated using a standard value for the energy released 

through condensation of water (1060 BTU/pound, [17, 29]).  Figure 9.1 is a screenshot of the 

spreadsheet used to calculate the amount of energy released by condensation according to these 

calculations.   

It may be that vapor temperatures in the heating pipes cannot be reduced to the temperature in 

the greenhouse, as heat transfer becomes very slow when the differential between pipes and 

ambient air in the structure approaches zero.  In this case, the following calculations would relate 

to the lowest temperature achievable in the pipes. 
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Data from two different compost trials at the UNH ASPHC system were used to generate 

estimates of heat energy that could be captured using these assumptions (Figure 9.2). The two 

were chosen as they varied widely in terms of initial temperature, change in temperature over 

time, change in amount of air drawn through the piles and amount of energy released. It is 

important to note that each of these two data sets are for just one of 4 sets of bays in the facility. 

At full operation, potential heat capture could be up to 4 times those presented here.   Note also 

that the second pile generates more captured heat than the first (Figure 9.2) even with a lower 

pile temperature, due to higher total volume of airflow.  This again emphasizes the concept that 

the kind of system visualized here might be managed differently to maximize heat gain rather 

than rate of throughput of material.  

 

Figure 9.1. Daily estimates of heat release by condensation of vapor drawn from 
compost piles by the ASP/HRC system at UNH (see text for explanation). 
 

Figure 9.2 Data from two different composting trials at the UNH ASPHC facility.  Green 
line – air flow (CFM), Blue line - pile and vapor temperature (F), Red line – heat released 
using assumptions described in the text  (BTU/day). 
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Over the first 35 days (for comparison with results from the first three methods), the first trial 

averaged ~1 MMBTU heat energy capture per day.  The second trial averaged closer to 1.2 

MMBTU per day.  These values are again for one of four sets of bays in the facility, yielding 

estimates of 4.0 to 4.8 MMBTU per day at full capacity.  Using the lower of these two values, 

potential efficiency of heat capture appears to be much higher for the direct use of heated vapor 

(Table 9.2).   

      MMBTU/day  Efficiency 

 Estimated Energy Release                       5.5   

                 Energy Capture by Method     

            With Heat Exchanger                   0.8         15% 

  Direct Use        4.0   73% 

 

 

 

       3. Estimating Energy Requirements for Greenhouse Heating on an Annual Basis 

Data are available from the UNH Energy Office on the quantity of heat required for year-round 

operation of three different high tunnel/greenhouse systems, one at Kingman Farm and two 

adjacent to the Fairchild Dairy (Table 9.3). Data are recorded as “therms” of propane, with a 

therm being equivalent to 100,000 BTUs.  Kingman #5 is actually a set of 3 steel frame houses 

with double-wall polycarbonate cover, used as part of the aquaponics/lettuce production system 

described above.  The Fairchild high tunnels are covered in sheet plastic.  The average annual 

total for energy demand is about 3125 therms (312.5 MMBTU) per greenhouse per year.  

 

 

 

 

 

 

Data from Tables 9.1 – 9.3 can be used to determine the potential for heating UNH greenhouses 

with available compostable materials and an ASP/HRC composting system.  Amounts of 

material in Table 9.1 are combined with energy release and efficiencies of capture with a heat 

exchanger or by direct use (Table 9.2) to determine the total amount of energy captured.  These 

values are divided by the annual heat demand for a greenhouse at UNH (Table 9.3) to produce an 

index of the number of units that could be heated.  The estimates for direct use assume a target 

greenhouse temperature of 60F (Table 9.4). 

Table 9.3. Annual Energy Requirement for high tunnel greenhouses  

    (Propane Therms : 1 Therm = ~100,000 BTUs) 

       Fiscal Year        Fairchild #1     Kingman #5      Fairchild #3 

 2015  4,378.30        

2016             2,754.70        

2017  3,112.90        

2018  3,442.00  9,657.00    

2019  3,654.30  6,412.40  4,084.40  
 

Table 9.2 Comparison of apparent efficiency of heat capture as measured at the UNH 
ASP/HRC system (with heat exchanger) and estimated for a direct use system involving 
condensation of vapor in baseboard/type heating pipes in a greenhouse or other structure. 
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            4. A Generalized Model of an integrated Compost/Greenhouse System 

Data at the annual time step as presented above provide a rough assessment of the potential for 

compost energy to heat greenhouses at UNH.  However, for this combination of technologies to 

be successful, the timing of energy supply and energy demand must coincide. To allow this more 

detailed analysis, a model of energy demand based on high-resolution weather data was 

developed and linked to measured rates of energy generation and capture described above. 

The model was constructed in Excel to increase accessibility to practitioners and general 

audiences. The model includes 1) an hourly time step calculation of solar energy gain and heat 

losses through the greenhouse surfaces and by air turnover, 2) a summation of hourly data to 

daily totals, and 3) the addition of heat energy from a module estimating heat capture from 

compost using the analysis presented here.  Calculations are summed at a daily timestep.  The 

size of both the simulated greenhouse and the composting facility can be modified in the model 

to test different potential combinations of facilities.  The spreadsheet model is available from the 

first author of this chapter. 

Characterization of the greenhouse as well as target internal temperature and example hourly 

calculations are summarized in Figure 9.3.  Length, width, and sidewall and peak height values 

are used to calculate the surface area of the cover and the internal volume of the structure.  The 

type of cover is defined along with the energy exchange characteristics of that cover.  The target 

internal temperature is specified.  It should be noted that this temperature is actually the final 

temperature in the heating pipes before the vapor exits the system.  Again, the actual temperature 

in the greenhouse may be lower if the exhaust vapor cannot be reduced to the internal 

temperature, as discussed above. 

For this example, hourly meteorological data were acquired from a station located at Kingman 

Farm, ~3 miles from the UNH campus [109].  Weather data are combined with greenhouse 

dimensions and cover characteristics to estimate solar energy gain and heat loss through the 

cover and by air exchange, yielding an energy balance for the structure (Figure 9.3).   

Table 9.4 Potential energy generation in relationship to annual heat energy demand for high tunnel 

greenhouses on the UNH campus.  Material values from Table 7.1.  Efficiencies from Table 7.2. 

  

                 Greenhouse    

Source            Material    Total Energy  Total Energy Captured     Heat Demand    Greenhouses Heated                      

          Release     Exchanger   Direct           Exchanger   Direct      

  Tons       MMBTU/yr      MMBTU per year    MMBTU/year     

 

On-Campus   990          2,425          364        1770               312.5         1.2            5.7 

All UNH 1806          4,425          664        3230                               2.1          10.3         

Plus Durham 2166          5,307          796        3874                                           2.5          12.4 
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Hourly balances for each day were summed over the 24-hour period to calculate total energy 

gain and loss. These values were paired with estimated energy capture from two sets of measured 

data drawn from 2 different trials at the UNH ASPHC facility (Figures 9.1 and 9.2), and a total 

daily estimated energy net gain or loss calculated for each day (Figure 9.4). 

 

 

We used data from a colder-than-average January (2014) to compare estimated greenhouse 

requirements with potential heat capture from 2 pairs of bays UNH ASP/HRC system with direct 

use (Figure 9.5).  The top graph shows the net energy balance for an unheated greenhouse 

specified as in Figure 9.3.  Solar gain was insufficient to heat the greenhouse on every day of the 

month. 

Figure 9.4 Daily total energy balances estimated for the first 6 days in January 2014 
including estimated energy availability from an ASPHC facility of the size at UNH (see 
text for explanation). 
 

Figure 9.3. Sample inputs and outputs from a simple greenhouse energy balance 
model.  See text for explanation.   
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The bottom graph adds heat input from the two pairs of bays described in Figure 9.2.  With only 

two of the four pairs of bays, the greenhouse energy balance is positive on all but one extremely 

cold day.  A small amount of supplemental heat would be required to maintain temperatures of 

60F and above.  Lowering that target greenhouse temperature to 50F would create a positive 

balance for all days.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Conclusions 

In this chapter we assess the potential for heating high tunnel greenhouses on the UNH campus 

using heat energy generated by an ASP/HRC system in a total of four ways.   

 

Results suggest large differences in heating capacity based on the method used to capture the 

heat generated by the facility, with the efficiency of the direct use option apparently up to 5 times 

that of the heat exchanger/storage approach.  Using a heat exchanger and water heat storage tank, 

Figure 9.5. Energy balance for 
unheated greenhouse and one 
heated with vapor from an 
ASP/HRC system. 
 

Top: Daily heat energy 
balance for an unheated 
greenhouse as described in 
Figure 7.1 for the month of 
January 2014.  
 

Bottom: the same balance 
with estimated heat gain 
potential from two sets of 
bays using data from two 
trials of the UNH ASPHC 
system (from Figure 7.4). 
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1-2 high tunnels could be heated using campus-only or campus plus ODRF and Durham sources, 

respectively.  With the direct use approach, an estimated 5-10 high tunnels could be heated.  It 

should be stressed that the direct use estimates needs to be tested in a real application. 

 

A model of greenhouse energy balances is presented that offers the potential for a more detailed 

analysis using an hourly-to-daily time step.  This simple spreadsheet model could be of value to 

practitioners who need to know not only annual balances, but the management steps that would 

be needed to maintain greenhouse conditions within acceptable bounds under extreme conditions 

caused by daily weather fluctuations. 

 

Results presented here suggest that it would be valuable to undertake a physical trial of the direct 

use method of linking an ASP/HRC system with one or more existing high tunnels on the UNH 

campus. 
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Epilogue - Composting and High Tunnels at UNH: A Modest Proposal – John Aber  

 

The agroecosystem research summarized in this set of chapters was never intended as a purely 

academic exercise.   From the beginning, in keeping with the goals of the USDA Sustainable 

Agriculture Research Education (SARE) program and the Land Grant Mission of UNH, we 

hoped to provide information and new approaches that would increase the sustainability of 

organic dairies in New England.  While a wide variety of topics has been examined, including 

alternative energy sources, innovative management of farm woodlots, dairy farmer preferences 

and practices for bedding, water and nitrogen usage and cycles (all summarized on the project 

website [1]), two ideas appear to have potentially valuable applications in the farm operations at 

UNH, and perhaps to farms across the region. 

 

The first is the use of the wood shaving machine to produce bedding.  Results from that work 

suggest that there is a business opportunity for producing bedding from low quality softwoods if 

that enterprise is embedded in a concentrated dairy farming region.  For farmers wanting to 

produce bedding for on-farm purposes, the breakeven volume of bedding was found to be dairy 

operations with greater than 170 milkers [96].   Our survey of dairy farms across New England 

revealed that most farms had woodlots, and the average size of those woodlots was sufficient to 

provide bedding for those farms.  The value of low quality softwoods as bedding far exceeds its 

value as pulp.  The quantitative financial analysis in Smith et al [96] provides a basis for 

planning a bedding production enterprise, which could be a regional cooperative, a profit-making 

venture, or a large farm operation, either dairy or equine, with sufficient bedding demand.   

 

The second system, and one that may have real potential for UNH, is the Aerated Static Pile/Heat 

Recovery Composting (ASP/HRC) system.  Chapter 9 tallies the available organic waste 

resources on and near campus, and pairs the estimated heat energy yield with measured energy 

requirements for high tunnel greenhouses on campus.  The comparison is so positive and 

favorable, that a proposal to test the idea at the campus agricultural facilities seems warranted. 

 

A major hinderance to advancing this possibility is the known initial cost of the current 

ASP/HRC system at the Organic Dairy Research Farm (ODRF).  That facility was designed with 

research-quality infrastructure and to the University’s 100-year lifetime standard.  At $550,000, 

the cost is prohibitive for implementation across other agricultural locations on campuses with 

similar building requirements. 

 

However, our earliest research on this approach (Chapter 1) demonstrated that low-cost 

alternatives are also capable of generating high temperatures in compost vapors.  Can a low-cost 

alternative to the research-grade facility at the ODRF be designed and paired with high tunnel 

greenhouses on campus?  Results in Chapters 4 and 9 suggest that the answer is yes.  What might 

such a system look like, what would it cost, and how much energy might be generated to heat 

those structures?  In addition, how much money might be saved by removing the need to tend 

and turn compost as handled in the existing conventional, windrow-based system in use at UNH?  

Is there reputational value in applying advanced composting methods to the handling of campus 

wastes, as has been done at the University of Maine [108]?  Here we can only begin to suggest 

some answers to these questions using information from the agricultural facilities in place at 

UNH. 
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Opportunities for Linking ASP/HRC Composting to High Tunnels at UNH 

 

Four potential opportunities can be identified for linking ASP/HRC composting with existing or 

envisioned high tunnels on farms operated by the New Hampshire Agricultural Experiment 

Station (NHAES) and UNH: 1) Add a simplified ASP/HRC system to an existing high tunnel 

with a heat storage water tank and reversible heat pumps, 2) Include a simplified ASP/HRC 

system in plans for construction of two new high tunnels adjacent to the Fairchild Dairy, 3) Add 

a simplified ASP/HRC system to three relatively new greenhouses at Kingman Farm, the 

location of the current composting program, and 4) Construct a high tunnel over or adjacent to 

the biofilter area already in place at the ASP/HRC system at the Organic Dairy Research Farm 

(ODRF).  Each of these concepts provides opportunities for faculty and student research. 

 

1) Add a simplified ASP/HRC system to an existing high tunnel with a heat storage water 

tank and reversible heat pumps, 

 

A high tunnel located at the Woodman Farm and used by the Organic Gardening Club was the 

location for a research project by a now-departed faculty member who partnered with a local 

sustainable energy company to test the potential for using reversible heat pumps to buffer 

internal temperatures during shoulder seasons.  The installation included a large water storage 

tank adjacent to the high tunnel and two reversible heat pumps located inside (Figure 66).   

 

 

The purpose of the tank and reversible air-to-water heat pumps was to extract heat from hot air in 

the high tunnel during periods of high solar input and high temperatures in the structure, and 

store that heat in warmed water in the insulated tank.  At night or during cloudy or cold periods, 

the warmed water in the tank could be used as the heat source to be multiplied by the reversible 

heat pumps, producing warmed air for the high tunnel.   

 

Figure E.1 Left: Image of a high tunnel at Woodman Farm with insulated water heat storage 
tank used to capture heat removed from the structure and then as a source for the heat 
pumps within the structure.  Right: Two reversible air-to-water heat pumps inside the high 
tunnel pictured at left.  See text for additional explanation. 
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The efficiency of heat pumps in heating mode is related to the temperature of the heat source to 

be multiplied (although there are operational upper limits to this temperature source).  While this 

application fell short of what was envisioned, the concept of using a much warmer water source 

would seem to have potential.   

 

Behind the high tunnel and water storage tank is a large, flat, sandy area that is ideally 

constructed for composting.  The concept presented here is to use this space for a simplified 

ASP/HRC system that is vented into the insulated box containing the water tank in order to heat 

the water in that tank (Figure E.2).  With this warmer water source, the efficiency of the heat 

pumps, to be operated then only in air-heating mode, should be increased. 

 

Cost for implementation of this concept should be relatively low.  The ASP system pictured is 

decidedly low-tech.  The heat pumps and high tunnel are in place.  Some engineering would be 

involved in connecting the vapor flow from the compost into the insulated shed, and, as with all 

application, providing for outflow of condensate produced during heat transfer.  The on-campus 

location and tie to the Organic Garden Club should assure high student interest and participation.  

 

2) Include a simplified ASP/HRC system in plans for construction of two new high tunnels 

adjacent to the Fairchild Dairy  

 

UNH has approved funds for construction of two new high tunnels adjacent to the Fairchild 

Dairy.  During construction, a small space would be reserved for baseboard-like heating pipes 

within the structure (Figure E.3).  A simplified ASP system would be located adjacent to the 

structures and heated vapor from the composting system would be pumped through these pipes 

as needed to warm the structure.  Again, providing for outflow of condensate would be required. 

 

Adding the heat transfer pipes and preparing a site like that near the high tunnel in option 1 to 

support the simplified ASP system should not represent a substantial increase in the cost of the 

structures themselves.   

 

Figure E.2 A simplified ASP/HRC system like the one pictured (Left) would be placed on 
the sandy pad area behind this high tunnel.  Vapor would be piped through the structure 
housing the insulated water tank to increase water temperature in the tank.  The existing 
heat pumps in the structure would draw on this warm water source to operate at high 
efficiency in producing warm air for the structure. 
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3) Add a simplified ASP/HRC system to three relatively new greenhouses at Kingman 

Farm 

 

The concept here is the same as for 2 

above, but would include the addition 

of a connection from the ASP system 

to the greenhouses and the addition 

of heating pipes within the structures.  

One potential advantage of this 

concept is that the houses are located 

near the current composting 

operation at Kingman Farm.  In 

addition, the houses have been used 

for an innovative project involving 

raising of tilapia through aquaculture 

techniques, with wastes from the fish 

tanks being processed in part by use 

in a hydroponic system for growing 

lettuce (Figure E.4 [66]). 

 

 

 

 

 

 

 

 

Figure E.3. Conceptual diagram of a high tunnel/greenhouse system heated by direct piping 
of vapor from an ASP system into heat transfer pipes within the structure. 

Figure E.4. Lettuce growing in a hydroponic system 
used in part to process wastes from an aquaculture 
project [66]. 
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4) Construct a high tunnel adjacent to the biofilter area already in place adjacent to the 

ASP/HRC system at the Organic Dairy Research Farm (ODRF). 

 

This may be the simplest option in that all of the 

infrastructure for composting and energy extraction is 

in place, as we all an operational biofilter (see Chapter 

6 and Figure E.5).  All that would be required for this 

application is the construction of a new high tunnel 

adjacent to the biofilter.  An optimal configuration 

might route the compost vapor through baseboard-like 

heating pipes in the added greenhouse first, followed by 

passage through the biofilter. 

 

 

 

 

 

 

 

 

 

Challenges Become Research Opportunities 

  

This short presentation is not intended to minimize the logistical and operational challenges and 

opportunities that each realization poses.  Among these are: 

 

• Designing and testing low cost alternatives for achieving ASP/HRC system results 

• Designing the heat transfer system to deliver energy captured in the ASP/HRC system to  

          the attached greenhouse/high tunnel 

• Engineering a control system for this integrated food production system that  

          optimizes aerations timing for both energy generation and greenhouse heating 

• For option 1, restarting the existing heat pumps and configuring the connection between the     

    composting system and the water storage tank 

• For all options, exploring the potential to tap into the exhaust vapor stream to “bleed” 

     carbon dioxide into the structure to fertilize plant growth 

 

A number of comparisons could be made between and among these 4 options, but any more 

detailed analyses at this time and in this document would seem to be premature.  The best next 

step would be to convene a group of interested faculty, staff and students to explore the 

possibilities and generate proposals for one or more of these options. 

  

Figure E.5. The biofilter in place at the 
Organic Dairy Research Farm (see Chapter 6).  
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