27 research outputs found
A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues
Cysteine (Cys) residues often play critical roles in proteins, for example, in
the formation of structural disulfide bonds, metal binding, targeting proteins
to the membranes, and various catalytic functions. However, the structural
determinants for various Cys functions are not clear. Thiol oxidoreductases,
which are enzymes containing catalytic redox-active Cys residues, have been
extensively studied, but even for these proteins there is little understanding
of what distinguishes their catalytic redox Cys from other Cys functions.
Herein, we characterized thiol oxidoreductases at a structural level and
developed an algorithm that can recognize these enzymes by (i) analyzing amino
acid and secondary structure composition of the active site and its similarity
to known active sites containing redox Cys and (ii) calculating accessibility,
active site location, and reactivity of Cys. For proteins with known or modeled
structures, this method can identify proteins with catalytic Cys residues and
distinguish thiol oxidoreductases from the enzymes containing other catalytic
Cys types. Furthermore, by applying this procedure to Saccharomyces
cerevisiae proteins containing conserved Cys, we could identify the
majority of known yeast thiol oxidoreductases. This study provides insights into
the structural properties of catalytic redox-active Cys and should further help
to recognize thiol oxidoreductases in protein sequence and structure
databases
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain âŒ8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
52 Genetic Loci Influencing Myocardial Mass.
BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 à 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular
conduction, and is associated with conduction abnormalities, pacemaker
implantation, atrial fibrillation (AF), and cardiovascular mortality.
Here we report a multi-ancestry (N = 293,051) genome-wide association
meta-analysis for the PR interval, discovering 202 loci of which 141
have not previously been reported. Variants at identified loci increase
the percentage of heritability explained, from 33.5% to 62.6%. We
observe enrichment for cardiac muscle developmental/contractile and
cytoskeletal genes, highlighting key regulation processes for
atrioventricular conduction. Additionally, 8 loci not previously
reported harbor genes underlying inherited arrhythmic syndromes and/or
cardiomyopathies suggesting a role for these genes in cardiovascular
pathology in the general population. We show that polygenic
predisposition to PR interval duration is an endophenotype for
cardiovascular disease, including distal conduction disease, AF, and
atrioventricular pre-excitation. These findings advance our
understanding of the polygenic basis of cardiac conduction, and the
genetic relationship between PR interval duration and cardiovascular
disease.
</p
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 nonâcritically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (nâ=â257), ARB (nâ=â248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; nâ=â10), or no RAS inhibitor (control; nâ=â264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ supportâfree days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ supportâfree days among critically ill patients was 10 (â1 to 16) in the ACE inhibitor group (nâ=â231), 8 (â1 to 17) in the ARB group (nâ=â217), and 12 (0 to 17) in the control group (nâ=â231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ supportâfree days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Social anxiety and peer experiences in middle childhood: The importance of group acceptance and close dyadic friendships.
Interrelations among social anxiety, peer status, and friendship variables were investigated in an elementary school-aged sample (N = 490). Sociometric procedures, child-report, and teacher-report measures were administered on a single occasion during the fall semester. Relative to other sociometric groups, peer-rejected children reported higher levels of social anxiety and depression and were perceived by teachers as exhibiting more externalizing and internalizing difficulties and less socially skilled behavior and academic competence. Peer status and friendship variables were related to child-, peer-, and teacher-reported internalizing symptoms and externalizing behaviors. Regarding the identity of children\u27s best friends, results varied by informant source, with teacher and peer reports supporting behavioral and emotional similarities among best friend dyads. Finally, perceived positive and negative friendship qualities made incremental contributions to children\u27s social anxiety scores, even after controlling for peer-derived ratings of acceptance. Friendship quality did not moderate the relation between social preference and social anxiety scores for boys. Low-accepted girls, however, experienced heightened social anxiety when their best friendships were rated high in negative qualities, thereby supporting the moderator model for girls. Results corroborated and extended previous research and provided information regarding two levels of peer relations. Clinical implications, methodological constraints, and suggestions for future research are discussed