394 research outputs found

    ECC2K-130 on NVIDIA GPUs

    Get PDF
    A major cryptanalytic computation is currently underway on multiple platforms, including standard CPUs, FPGAs, PlayStations and Graphics Processing Units (GPUs), to break the Certicom ECC2K-130 challenge. This challenge is to compute an elliptic-curve discrete logarithm on a Koblitz curve over F2131\rm F_{2^{131}} . Optimizations have reduced the cost of the computation to approximately 277 bit operations in 261 iterations. GPUs are not designed for fast binary-field arithmetic; they are designed for highly vectorizable floating-point computations that fit into very small amounts of static RAM. This paper explains how to optimize the ECC2K-130 computation for this unusual platform. The resulting GPU software performs more than 63 million iterations per second, including 320 million F2131\rm F_{2^{131}} multiplications per second, on a $500 NVIDIA GTX 295 graphics card. The same techniques for finite-field arithmetic and elliptic-curve arithmetic can be reused in implementations of larger systems that are secure against similar attacks, making GPUs an interesting option as coprocessors when a busy Internet server has many elliptic-curve operations to perform in parallel

    Binding interactions with sevelamer and polystyrene sulfonate in vitro

    Get PDF
    This study explored the binding of 28 drugs, which were selected based on frequency of concomitant use and chemical properties, to sevelamer and polystyrene sulfonate in vitro. The relative binding was determined by dissolving the investigated drugs alone (=control), together with 800 mg of sevelamer and 15 g of polystyrene sulfonate at different pH levels (1.5, 5.5, and 7.4), respectively. After incubation at 37℃ and shaking for 60 min, the solutions were diluted and centrifuged, and the drug concentrations were quantified with validated analytical assays. The binding assays were performed in threefold. The mean relative binding (MRB) at each pH level was calculated, with a MRB >20% for at least one pH level to be considered as relevant binding. Fourteen and 23 potentially new binding interactions were identified with sevelamer and polystyrene sulfonate, respectively. These potentially new binding interactions have to be studied in vivo to assess their clinical relevance

    All-optical ion generation for ion trap loading

    Full text link
    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.Comment: 7 pages, 9 figure

    A class of ansatz wave functions for 1D spin systems and their relation to DMRG

    Full text link
    We investigate the density matrix renormalization group (DMRG) discovered by White and show that in the case where the renormalization eventually converges to a fixed point the DMRG ground state can be simply written as a ``matrix product'' form. This ground state can also be rederived through a simple variational ansatz making no reference to the DMRG construction. We also show how to construct the ``matrix product'' states and how to calculate their properties, including the excitation spectrum. This paper provides details of many results announced in an earlier letter.Comment: RevTeX, 49 pages including 4 figures (macro included). Uuencoded with uufiles. A complete postscript file is available at http://fy.chalmers.se/~tfksr/prb.dmrg.p

    Can Google search Data help predict macroeconomic series?

    Get PDF
    We make use of Google search data in an attempt to predict unemployment, CPI and consumer confidence for the US, UK, Canada, Germany and Japan. Google search queries have previously proven valuable in predicting macroeconomic variables in an in-sample context. However, to the best of our knowledge, the more challenging question of whether such data have out-of-sample predictive value has not yet been answered satisfactorily. We focus on out-of-sample nowcasting, and extend the Bayesian structural time series model using the Hamiltonian sampler for variable selection. We find that the search data retain their value in an out-of-sample predictive context for unemployment, but not for CPI or consumer confidence. It is possible that online search behaviours are a relatively reliable gauge of an individual’s personal situation (employment status), but less reliable when it comes to variables that are unknown to the individual (CPI) or too general to be linked to specific search terms (consumer confidence)

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb−1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.6−1.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date
    • 

    corecore